# Copyright 2021 The NetKet Authors - All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import Any, Optional, Tuple
import numpy as np
import jax
import jax.numpy as jnp
from jax.nn.initializers import normal
import flax
from flax.core.frozen_dict import FrozenDict
import netket.jax as nkjax
from netket.operator import AbstractOperator, Squared
from netket.hilbert import AbstractHilbert
from netket.utils.types import PyTree, PRNGKeyT, NNInitFunc
from netket.utils.dispatch import dispatch, TrueT, FalseT
from netket.stats import Stats
class VariationalState(abc.ABC):
"""Abstract class for variational states representing either pure states
or mixed quantum states.
A variational state is a quantum state depending on a set of
parameters, and that supports operations such
as computing quantum expectation values and their gradients.
A Variational stat can be serialized using flax's msgpack machinery.
See `their docs <https://flax.readthedocs.io/en/latest/flax.serialization.html>`_.
"""
[docs] def __init__(self, hilbert: AbstractHilbert):
"""Initialize the Abstract base class of a Variational State defined
on an hilbert space.
Args:
hilbert: The hilbert space upon which this state is defined.
"""
self._hilbert = hilbert # type: AbstractHilbert
self._model_state = {} # type: PyTree
self._parameters = {} # type: PyTree
@property
def hilbert(self) -> AbstractHilbert:
r"""The descriptor of the Hilbert space
on which this variational state is defined.
"""
return self._hilbert
@property
def parameters(self) -> PyTree:
r"""The pytree of the parameters of the model."""
return self._parameters
@property
def n_parameters(self) -> int:
r"""The total number of parameters in the model."""
return nkjax.tree_size(self.parameters)
@parameters.setter
def parameters(self, pars: PyTree):
if not isinstance(pars, FrozenDict):
if not isinstance(pars, list) and not isinstance(pars, tuple):
pars = flax.core.freeze(pars)
self._parameters = pars
self.reset()
@property
def model_state(self) -> Optional[PyTree]:
r"""The optional pytree with the mutable state of the model."""
return self._model_state
@model_state.setter
def model_state(self, state: PyTree):
if not isinstance(state, FrozenDict):
if not isinstance(state, list) and not isinstance(state, tuple):
state = flax.core.freeze(state)
self._model_state = state
self.reset()
@property
def variables(self) -> PyTree:
r"""The PyTreee containing the paramters and state of the model,
used when evaluating it.
"""
return flax.core.freeze({"params": self.parameters, **self.model_state})
@variables.setter
def variables(self, var: PyTree):
if not isinstance(var, FrozenDict):
var = flax.core.freeze(var)
self.model_state, self.parameters = var.pop("params")
[docs] def init_parameters(
self, init_fun: Optional[NNInitFunc] = None, *, seed: Optional[PRNGKeyT] = None
):
r"""
Re-initializes all the parameters with the provided initialization function,
defaulting to the normal distribution of standard deviation 0.01.
.. warning::
The init function will not change the dtype of the parameters, which is
determined by the model. DO NOT SPECIFY IT INSIDE THE INIT FUNCTION
Args:
init_fun: a jax initializer such as :ref:`jax.nn.initializers.normal`.
Must be a Callable taking 3 inputs, the jax PRNG key, the shape and the
dtype, and outputting an array with the valid dtype and shape. If left
unspecified, defaults to :code:`jax.nn.initializers.normal(stddev=0.01)`
seed: Optional seed to be used. The seed is synced across all MPI processes.
If unspecified, uses a random seed.
"""
if init_fun is None:
init_fun = normal(stddev=0.01)
rng = nkjax.PRNGSeq(nkjax.PRNGKey(seed))
def new_pars(par):
return jnp.asarray(
init_fun(rng.take(1)[0], shape=par.shape, dtype=par.dtype),
dtype=par.dtype,
)
self.parameters = jax.tree_map(new_pars, self.parameters)
[docs] def reset(self):
r"""Resets the internal cache of th variational state.
Called automatically when the parameters/state is updated.
"""
[docs] def expect(self, Ô: AbstractOperator) -> Stats:
r"""Estimates the quantum expectation value for a given operator O.
In the case of a pure state $\psi$, this is $<O>= <Psi|O|Psi>/<Psi|Psi>$
otherwise for a mixed state $\rho$, this is $<O> = \Tr[\rho \hat{O}/\Tr[\rho]$.
Args:
Ô: the operator O.
Returns:
An estimation of the quantum expectation value <O>.
"""
return expect(self, Ô)
[docs] def grad(
self,
Ô,
*,
use_covariance: Optional[bool] = None,
mutable: Optional[Any] = None,
) -> PyTree:
r"""Estimates the gradient of the quantum expectation value of a given operator O.
Args:
op (netket.operator.AbstractOperator): the operator O.
is_hermitian: optional override for whever to use or not the hermitian logic. By default
it's automatically detected.
Returns:
array: An estimation of the average gradient of the quantum expectation value <O>.
"""
r = self.expect_and_grad(Ô, use_covariance=use_covariance, mutable=mutable)
return r[1]
[docs] def expect_and_grad(
self,
Ô: AbstractOperator,
*,
mutable: Optional[Any] = None,
use_covariance: Optional[bool] = None,
) -> Tuple[Stats, PyTree]:
r"""Estimates both the gradient of the quantum expectation value of a given operator O.
Args:
Ô: the operator Ô for which we compute the expectation value and its
gradient
mutable: Can be bool, str, or list. Specifies which collections in the
`model_state` should be treated as mutable: bool: all/no collections
are mutable. str: The name of a single mutable collection. list: A list
of names of mutable collections. This is used to mutate the state of the
model while you train it (for example to implement BatchNorm. Consult
`Flax's Module.apply documentation <https://flax.readthedocs.io/en/latest/_modules/flax/linen/module.html#Module.apply>`_
for a more in-depth exaplanation).
use_covariance: whever to use the covariance formula, usually reserved for
hermitian operators, ⟨∂logψ Oˡᵒᶜ⟩ - ⟨∂logψ⟩⟨Oˡᵒᶜ⟩
Returns:
An estimation of the quantum expectation value <O>.
An estimation of the average gradient of the quantum expectation value <O>.
"""
if mutable is None:
mutable = self.mutable
return expect_and_grad(self, Ô, use_covariance, mutable=mutable)
# @abc.abstractmethod
[docs] def quantum_geometric_tensor(self, qgt_type):
r"""Computes an estimate of the quantum geometric tensor G_ij.
This function returns a linear operator that can be used to apply G_ij to a
given vector or can be converted to a full matrix.
Args:
qgt_type: the optional type of the quantum geometric tensor. By default it
is automatically selected.
Returns:
nk.optimizer.LinearOperator: A linear operator representing the quantum
geometric tensor.
"""
raise NotImplementedError # pragma: no cover
[docs] def to_array(self, normalize: bool = True) -> jnp.ndarray:
"""
Returns the dense-vector representation of this state.
Args:
normalize: If True, the vector is normalized to have L2-norm 1.
Returns:
An exponentially large vector representing the state in the computational
basis.
"""
return NotImplemented # pragma: no cover
[docs] def to_qobj(self):
r"""Convert the variational state to a qutip's ket Qobj.
Returns:
A `qutip.Qobj` object.
"""
from qutip import Qobj
q_dims = [list(self.hilbert.shape), [1 for i in range(self.hilbert.size)]]
return Qobj(np.asarray(self.to_array()), dims=q_dims)
class VariationalMixedState(VariationalState):
def __init__(self, hilbert, *args, **kwargs):
super().__init__(*args, **kwargs)
self._hilbert_physical = hilbert
@property
def hilbert_physical(self) -> AbstractHilbert:
return self._hilbert_physical
def to_matrix(self, normalize: bool = True) -> jnp.ndarray:
"""
Returns the dense-matrix representation of this operator.
Args:
normalize: If True, the matrix is normalized to have trace 1.
Returns:
An exponentially large matrix representing the state in the computational
basis.
"""
return NotImplemented # pragma: no cover
def to_qobj(self):
r"""Convert this mixed state to a qutip density matrix Qobj.
Returns:
A `qutip.Qobj` object.
"""
from qutip import Qobj
q_dims = [list(self.hilbert_physical.shape), list(self.hilbert_physical.shape)]
return Qobj(np.asarray(self.to_matrix()), dims=q_dims)
@dispatch.abstract
def expect(vstate: VariationalState, operator: AbstractOperator):
"""
Computes the expectation value of the given operator over the
variational state.
Additional Information:
To implement `vstate.expect` for a custom operator, implement
the multiple-dispatch (plum-dispatc) based method according
.. code:
@nk.vqs.expect.register
expect(vstate : VStateType operator: OperatorType):
return ...
Args:
vstate: The VariationalState
operator: The Operator or SuperOperator.
Returns:
The expectation value wrapped in a `Stats` object.
"""
# default dispatch where use_covariance is not specified
# Give it an higher precedence so this is always executed first, no matter what, if there
# is a dispatch ambiguity.
# This is not needed, but makes the dispatch logic work fine even if the users write weak
# signatures (eg: if an users defines `expect_grad(vs: MCState, op: MyOperator, use_cov: Any)`
# instead of `expect_grad(vs: MCState, op: MyOperator, use_cov: bool)`
# there would be a resolution error because the signature defined by the user is stricter
# for some arguments, but the one below here is stricter for `use_covariance` which is
# set to bool. Since this signature below, in the worst case, does nothing, this ensures
# that `expect_and_grad` is more user-friendly.
@dispatch(precedence=10)
def expect_and_grad(
vstate: VariationalState,
operator: AbstractOperator,
use_covariance: Optional[bool],
*args,
mutable=None,
**kwargs,
):
r"""Estimates both the gradient of the quantum expectation value of a given operator O.
Additional Information:
To implement `vstate.expect` for a custom operator, implement
the multiple-dispatch (plum-dispatc) based method according to the signature below.
.. code:
@nk.vqs.expect.register
expect_and_grad(vstate : VStateType, operator: OperatorType,
use_covariance : bool/TrueT/FalseT, * mutable)
return ...
Args:
vstate: The variational state
Ô: the operator Ô for which we compute the expectation value and it's gradient
use_covariance: whever to use the covariance formula, usually reserved for
hermitian operators, ⟨∂logψ Oˡᵒᶜ⟩ - ⟨∂logψ⟩⟨Oˡᵒᶜ⟩
mutable: Can be bool, str, or list. Specifies which collections in the model_state should
be treated as mutable: bool: all/no collections are mutable. str: The name of a
single mutable collection. list: A list of names of mutable collections.
This is used to mutate the state of the model while you train it (for example
to implement BatchNorm. Consult
`Flax's Module.apply documentation <https://flax.readthedocs.io/en/latest/_modules/flax/linen/module.html#Module.apply>`_
for a more in-depth exaplanation).
Returns:
An estimation of the quantum expectation value <O>.
An estimation of the average gradient of the quantum expectation value <O>.
"""
# convert to type-static True/False
if isinstance(use_covariance, bool):
use_covariance = TrueT() if use_covariance else FalseT()
if use_covariance is None:
if isinstance(operator, Squared):
use_covariance = FalseT()
else:
use_covariance = TrueT() if operator.is_hermitian else FalseT()
if mutable is None:
mutable = vstate.mutable
return expect_and_grad(
vstate, operator, use_covariance, *args, mutable=mutable, **kwargs
)