
Journal of Computational and Applied Mathematics 196 (2006) 485–497
www.elsevier.com/locate/cam

IRKC: An IMEX solver for stiff diffusion–reaction PDEs
L.F. Shampinea, B.P. Sommeijerb,∗, J.G. Verwerb

aMathematics Department, Southern Methodist University, Dallas, TX 75275-0156, USA
bCenter for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Received 14 July 2005; received in revised form 27 September 2005

Abstract

The Fortran 90 code IRKC is intended for the time integration of systems of partial differential equations (PDEs) of diffusion–
reaction type for which the reaction Jacobian has real (negative) eigenvalues. It is based on a family of implicit–explicit Runge–Kutta–
Chebyshev methods which are unconditionally stable for reaction terms and which impose a stability constraint associated with the
diffusion terms that is quadratic in the number of stages. Special properties of the family make it possible for the code to select
at each step the most efficient stable method as well as the most efficient step size. Moreover, they make it possible to apply the
methods using just a few vectors of storage. A further step towards minimal storage requirements and optimal efficiency is achieved
by exploiting the fact that the implicit terms, originating from the stiff reactions, are not coupled over the spatial grid points. Hence,
the systems to be solved have a small dimension (viz., equal to the number of PDEs). These characteristics of the code make it
especially attractive for problems in several spatial variables. IRKC is a successor to the RKC code [B.P. Sommeijer, L.F. Shampine,
J.G. Verwer, RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math. 88 (1997) 315–326] that solves similar problems
without stiff reaction terms.
© 2005 Elsevier B.V. All rights reserved.

MSC: Primary: 65M20; 65L05; 65Y99; G.1.7; G.1.8; G4

Keywords: Numerical software; Diffusion–reaction PDEs; Time integration

1. Introduction

The RKC code of [9] solves a system of NEQN first-order ordinary differential equations (ODEs) of the form

y′(t) = FE(t, y). (1)

It is intended for problems arising in the semi-discretization of parabolic partial differential equations (PDEs) in one or
more space variables, but it accepts problems of relatively general form. Basic to this solver is the assumption that the
eigenvalues of the Jacobian of FE are on, or close to, the negative real axis. The solver implements a family of explicit,
second-order Runge–Kutta–Chebyshev methods. At each step it selects a method that is both stable and efficient. The
approach is attractive when the problem is at most moderately stiff and NEQN is relatively large. The paper [10]

∗ Corresponding author.
E-mail address: B.P.Sommeijer@cwi.nl (B.P. Sommeijer).

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.09.014

http://www.elsevier.com/locate/cam
mailto:B.P.Sommeijer@cwi.nl


486 L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497

considers how to solve equations of the form

y′(t) = FE(t, y) + FI(t, y), (2)

when the reactions described by the FI term cause the ODEs to be very stiff and the reaction Jacobian F ′
I possesses

a spectrum that is both real and negative. In the IRKC code that we present here, the term FE is handled by a variant
of the explicit methods of RKC and the term FI is handled implicitly. Such schemes are known as IMEX methods.
Implicit treatment of large systems of ODEs can have serious implications for storage, so we make assumptions about the
structure of FI that allow us to solve a useful class of problems with minimal storage. We have in mind systems of ODEs
that arise from semi-discretization of diffusion–reaction PDEs. We make no assumption about how the discretization
is done, but we do assume that the implicit terms at one grid point are not coupled to those at other grid points. This
kind of decoupling arises naturally with finite differences, finite volumes, and discontinuous Galerkin discretizations.
To take advantage of the great reductions in storage possible because of this assumption and the numerical method
employed, the user must present the problem to the solver in an appropriate way. If there are NPDES partial differential
equations, each call to the subroutine that evaluates FI is made with a vector y of NPDES components that correspond
to a single grid point. On demand the subroutine is also to evaluate the Jacobian of FI, a matrix that is only NPDES by
NPDES.

The papers [9,10] lay the foundation for the IMEX methods studied here, but there are some differences between
those methods and the ones implemented in IRKC. We derive here and implement in IRKC a measure of error that is
different from that of the papers cited. The software we present could be described as an extension of the Fortran 77
code RKC of [9], but it is a considerable extension because we have redesigned the interface and exploited features of
Fortran 90 to make it easier to use and at the same time solve problems that are more general.

In Section 2 we review briefly the IMEX methods of [10] and derive the error measure used in selecting the step
size. Section 3 is devoted to software issues and their resolution in Fortran 90. Section 4 contains numerical examples
of the use of IRKC.

2. The IMEX RKC family

Let yn, yn+1 denote approximations to y(tn), y(tn+1), respectively, with step size �n = tn+1 − tn. For s�2 stages,
the IMEX family of methods of [10] is defined by

Y0 = yn,

Y1 = Y0 + �̃1�nFE,0 + �̃1�nFI,1,

Yj = (1 − �j − �j )Y0 + �j Yj−1 + �j Yj−2 + �̃j �nFE,j−1 + �̃j �nFE,0

+ [�̃j − (1 − �j − �j )�̃1]�nFI,0 − �j �̃1�nFI,j−2 + �̃1�nFI,j ,

yn+1 = Ys , (3)

for j = 2, . . . , s and FE,j = FE(tn + cj �n, Yj ), FI,j = FI(tn + cj �n, Yj ). All the coefficients are available in analytical
form:

�̃1 = b1�1,

and for j = 2, . . . , s,

�j = 2bj�0

bj−1
, �j = −bj

bj−2
, �̃j = 2bj�1

bj−1
, �̃j = −(1 − bj−1)Tj−1(�0)�̃j , (4)

where

b0 = 1/(4�2
0), b1 = 1/�0, bj = T ′′

j (�0)/(T
′
j (�0))

2, j = 2, . . . , s, (5)



L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497 487

with �0 = 1 + �/s2, �1 = T ′
s (�0)/T ′′

s (�0). Here Tk is the Chebyshev polynomial of the first kind and degree k. For
arguments �0 > 1, it has the form

Tk(�0) = cosh (k arccosh(�0)) = cosh

(
k ln

(
�0 +

√
�2

0 − 1

))
.

Crucial to the good performance of the method is that it be implemented using the stable Chebyshev recursion

T0(z) = 1, T1(z) = z, Tj (z) = 2zT j−1(z) − Tj−2(z), 2�j �s. (6)

The increments cj are

c0 = 0, c1 = �1/�0,

and for j = 2, . . . , s,

cj = T ′
s (�0)T

′′
j (�0)/(T

′′
s (�0)T

′
j (�0)) = �j cj−1 + �j cj−2 + �̃j + �̃j .

The real stability boundary �E(s) corresponding to the part of the ODEs treated explicitly, i.e., the boundary when FI
is not present, is given by (see [10])

�E(s) ≈ (�0 + 1)T ′′
s (�0)

T ′
s (�0)

≈ 2

3
(s2 − 1)

(
1 − 2

15
�

)
. (7)

The parameter ��0 is still free and we use it to create some damping, an idea initially suggested in this context in
[3]. For � = 0 the explicit part of the method only works properly for eigenvalues of �FE/�y on the negative real axis.
Hence, a small imaginary perturbation might result in instability. To create more robustness for non-model situations,
� has been given a small positive value. The effect is that the stability region is a long narrow strip along the negative
axis in the complex plane (see [4] for further details). Based on our experience with RKC [9], � = 2

13 seems to be a
suitable choice in practical situations. As a result, a damping of ≈ 5% is obtained and the length of the real stability
interval is reduced by approximately 2% (see (7)).

The number of stages s in the scheme is determined on the basis of a stable treatment of the FE term. Given a step
size �n (chosen as in Section 2.4) and (an upper bound on) the spectral radius � of the Jacobian F ′

E, the number of
stages is set to the smallest value of s that satisfies the linear stability condition

�n�(F ′
E)��E(s) ≈ 0.653(s2 − 1).

Remark. In many applications described by diffusion–reaction PDEs, scientists are interested in transient behavior
and equilibria or steady-state solutions y for autonomous problems, FE(y) + FI(y) = 0. Standard Runge–Kutta and
linear multistep methods preserve steady states. This property is shared by all the stages of (3) and the result of the
step itself. In contrast, when operator splitting decouples the integration of the subsystems y′ = FE(y) and y′ = FI(y)

within time steps (time splitting), equilibria may not be preserved. For nonlinear problems with strongly competing
subsystems FE and FI, preservation of equilibria can be particularly important.

2.1. Solving the implicit relations

As in RKC, the diffusion operator FE in the IMEX scheme is treated explicitly, exploiting the underlying three-term
Chebyshev recursion (6) for stabilization. The difference now is that (3) is implicit in the stiff reaction term FI, requiring
at each stage the solution of a system of nonlinear algebraic equations

Yj − �̃1�nFI(tn + cj �n, Yj ) = Vj , (8)

with Vj given and Yj an unknown vector of dimension NEQN. Because FI has no underlying spatial grid connectivity,
this system consists of a large number (the number of grid points) of uncoupled systems with dimension NPDES, the
number of PDEs. As is customary when integrating stiff ODEs, we solve these systems by a modified Newton method.
For each subsystem, i.e., for each stage and each grid point, the Jacobian of FI and an LU decomposition of an iteration
matrix are formed. This is expensive, but it allows a dramatic reduction in storage. A modified Newton process is



488 L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497

used, meaning that for each subsystem, one iteration matrix is decomposed and this decomposition is used for all the
iterations needed to solve the subsystem.

2.2. Local truncation error

Following standard practice for ODE solvers [7], the heuristic for adjusting the step size is based on an analysis of
the local truncation error. For this purpose we consider applying (3) to the scalar test equation

y′ = (	E + 	I)y, (9)

where 	E and 	I represent diffusion and reaction eigenvalues, respectively. It is straightforward to show that

yn+1 = Rs(zE, zI)yn,

where Rs(zE, zI) is called the stability function associated with this test equation and satisfies [10]

Rs(zE, zI) = 1 − bsTs(�0) + bsTs(�0 + �1z̃), (10)

where

zE = �n	E, zI = �n	I, z = zE + zI, �̃1 = �1/�0, z̃ = z

1 − �̃1zI
.

It is shown in [10] that |Rs(zE, zI)|�1 for all pairs (zE, zI) satisfying

−0.653(s2 − 1) ≈ −�E(s)�zE �0 and zI �0.

The stability function is an approximation to exp(z̃) and exp(z). Expanding it for small z, we have

Rs(zE, zI) = 1 + z

1 − �̃1zI
+ 1

2

(
z

1 − �̃1zI

)2

+ O(z3)

= 1 + z + 1

2
z2 + �̃1zzI + O(z3, zz2

I , z
2zI). (11)

Comparing this expansion to that of the exponential, we see that the consistency order of 2 of the explicit method is
reduced to 1 because of the reaction term that is treated implicitly. However, the coefficient �̃1 is proportional to 1/s2.
The number of stages can be quite large, in which case we see that the method behaves rather like the second-order
explicit method.

Now we consider the general nonlinear system in autonomous form. Let y(t) be a smooth solution of y′ = F(y) =
FE(y) + FI(y) and let yn = y(tn). For �n → 0 we find as counterpart of (11) the expansion

yn+1 = y(tn) + �ny
′(tn) + 1

2 �2
ny

′′(tn) + �̃1�
2
nF

′
I (y(tn))F (y(tn)) + O(�3

n). (12)

Here F ′
I is the Jacobian of the reaction term. It is readily verified that the expansion for the general non-autonomous

system y′ = F(t, y) = FE(t, y) + FI(t, y) extends to

yn+1 = y(tn) + �ny
′(tn) + 1

2�2
ny

′′(tn) + �̃1�
2
nF

′
I (tn, y(tn))F (tn, y(tn))

+ �̃1�
2
n

�FI

�t
(tn, y(tn)) + O(�3

n). (13)

We associate the size of the local truncation error with the �2
n terms in this expansion,

Estn+1 = 1

2
�2
ny

′′(tn) + �̃1�
2
nF

′
I (tn, y(tn))F (tn, y(tn)) + �̃1�

2
n

�FI

�t
(tn, y(tn)). (14)

Controlling the size of the last term in a Taylor series that is taken into account by the formula goes back to the influential
solvers of Zonneveld [11]. This approach to controlling error is different from that of RKC, which estimates the leading
term of the local truncation error. Some discussion of the distinction is found in [7, p. 342] and references cited therein.



L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497 489

In this approach a distinction is made between adaptation of the step size and controlling the error. A reasonable way
to select the step size is to control the size of this term. The actual error made in the step is not known, but it is of
higher order than the term estimated, so it is expected to be rather smaller. Indeed, if all is going well, it is considerably
smaller and the control is rather conservative. This is reminiscent of local extrapolation. Because we took an approach
to error control different from that found in RKC, it would be misleading to compare directly results computed by the
two codes when they are both applicable.

2.3. Error estimate

There are a number of points of interest in the implementation of (14). The terms are approximated independently
by

y′′(tn) ≈ 1

�n

[F(tn+1, yn+1) − F(tn, yn)],

F ′
I (tn, y(tn))F (tn, y(tn)) + �FI

�t
(tn, y(tn)) ≈ 1

�n

[FI(tn+1, yn+1) − FI(tn, yn)].

We filter [8] the error estimate with the matrix (I − ��nA)−1 so that it has the correct qualitative behavior for the
stiff reaction components. The matrix A here is an approximation to the Jacobian F ′

I that was computed during the
evaluation of the implicit formula by a modified Newton iteration. In IRKC we take this matrix to be the Jacobian F ′

I
at (tn, yn) rather than at (tn+1, yn+1) because we have accepted the approximation yn and are trying to decide whether
to accept yn+1.

The coefficient � is at our disposal. It would be natural to choose it so that the matrix I − ��nF
′
I (tn, yn) is the same

as the iteration matrix in order to reuse an LU decomposition. However, to reduce greatly the storage required by the
solver, we do not save the decomposed iteration matrices. This means that we must repeat the calculations, but in partial
recompense, we are then free to choose a good value for �. Besides, we shall see that using an iteration matrix is not
satisfactory in the present application.

To select a value for �, we examine the behavior of Estn+1 for the scalar test Eq. (9),

Estn+1 = 1

2

zE + (1 + 2�̃1)zI

1 − �zI
(yn+1 − yn). (15)

As zI → −∞ the stability function Rs(zE, zI) remains bounded and is even of moderate size,

Rs(zE, −∞) = 1 − bsTs(�0) + bsTs(0) ≈ 1 − 1
3 (Ts(�0) − Ts(0)). (16)

We want to choose � so that the error estimate Estn+1 also remains bounded for zI → −∞. Substituting zI = −∞ in
(15) and using the relation yn+1 = Rs(zE, −∞)yn with Rs given in (16), we arrive at

Estn+1 = 1

2

1 + 2�̃1

�
bs(Ts(�0) − Ts(0))yn ≈ 1

6

1 + 2�̃1

�
(Ts(�0) − Ts(0))yn.

If we were to reuse iteration matrices, we would take � = �̃1. With this choice Estn+1 ∼ s2yn for large s because
�̃1 ∼ 1/s2. This is clearly a bad choice in a code which may resort to s-values that are quite large. We simply take �=1.
It leads to a bounded Estn+1 of moderate size and suits our purpose of filtering stiff components in the error estimate.

Summarizing, the error estimator Estn+1 used by the new IRKC code is evaluated by solving the linear system

(I − �nF
′
I (tn, yn))Estn+1 = 1

2�n(F (tn+1, yn+1) − F(tn, yn)) + �n�̃1(FI(tn+1, yn+1) − FI(tn, yn)).

(17)

The special form of the ODEs results in a block diagonal matrix F ′
I (tn, yn), making evaluation of this estimate efficient,

especially as regards storage.



490 L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497

2.4. Step size selection

Each step size �n is chosen so that the user-specified tolerance is met by the estimated local error. The strategy
implemented in IRKC is quite similar to the one used in RKC. The user specifies scalar relative (rtol) and absolute
(atol) error tolerances. Because the solver is based on a first-order method, these tolerances should not be very small.
With this in mind, we have set the default values to rtol = 10−2 and atol = 10−3.

The norm of the error estimate is computed in blocks. For k running over all NG = NEQN/NPDES grid points, we
let yn,k denote the NPDES elements of yn corresponding to the kth grid point, and similarly for other quantities. For
each grid point k the Euclidean norm of the weighted error vector is the square root of

errk =
NPDES∑

i=1

(
Est(i)n+1,k

atol + rtol max(|y(i)
n,k|, |y(i)

n+1,k|)

)2

.

Once all blocks are processed, the weighted RMS norm of the error is formed as

‖Estn+1‖ =
√√√√ 1

NEQN

NG∑
k=1

errk .

If ‖Estn+1‖�1, the current step is accepted and the next step size is predicted using information gathered in the
current and preceding step. If ‖Estn+1‖ > 1, the step is rejected and retried with a smaller step size �n. In either case
the new step size is taken to be a fraction of the largest possible value so as to reduce the number of rejected steps.
Specifically, the new step size is

�new = min(10, max(0.1, fac))�n,

where

fac = 0.8

( ‖Estn‖1/2

‖Estn+1‖1/2

�n

�n−1

)
1

‖Estn+1‖1/2 .

If the step is rejected, and also after the first successful step, the factor in parentheses is omitted. If the modified Newton
iteration fails to converge, the step size is simply halved.

IRKC automatically determines an initial step size in almost the same way as RKC. The scheme begins by setting
the absolute value of the initial step size, ABSH, to the maximum step size HMAX. Using a bound SPCRAD on �(F ′

E),
it then reduces ABSH as necessary so that SPCRAD ∗ ABSH is no bigger than one. This step size is small enough to
resolve an initial transient due to FE, but IRKC must account for FI as well. It is easy to compute JACNRM = ‖F ′

I ‖∞
because we have an analytical expression for this block diagonal matrix. In IRKC we further reduce ABSH as necessary
so that JACNRM ∗ ABSH is no bigger than one. The rest of the scheme for estimating an initial step size is identical
to that of RKC.

3. Software issues

We have redesigned the user interface of RKC and exploited the capabilities of Fortran 90 to make solving ODEs
easier despite solving a larger class of problems. We begin here with an outline of the collection of programs that make
up the package IRKC and then provide some details. Fortran 90 makes it possible to encapsulate all information about
the solution as a single structure of a derived type. This approach and the dynamic storage facilities of Fortran 90 make
it possible to relieve the user of tedious details of allocating storage. The solution structure can be called anything, but
let us suppose that it is called SOL. It must be declared as type IRKC_SOL. This structure and the computation itself
are initialized by a call to a function IRKC_SET. Among other things, the user must specify the initial point and a
final point in this call. We exploit the possibility in Fortran 90 of optional arguments so that the most common options
can be set by default. The integration is done by the subroutine IRKC. The default in IRKC_SET is for the integration
to proceed a step at a time, but optionally the solver can return just the solution at the final point. After each step an



L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497 491

auxiliary function IRKC_VAL can be used to approximate the solution anywhere in the span of the step. Statistics are
available directly in fields of the solution structure, but they can all be displayed conveniently by calling the auxiliary
subroutine IRKC_STATS.

3.1. Form of the solution

The solution structure SOL is initialized by IRKC_SET. It is then an input argument of the solver IRKC. If the
integration is being done a step at a time (the default), the SOL returned at one step is input to IRKC for the next
step. The solution structure has a good many fields. The most interesting fields are the current value of the independent
variable, SOL%T, and the current approximate solution, SOL%Y, a vector of NEQN components. The logical quantity
SOL%DONE is monitored to learn when the integration is complete.

The methods of IRKC provide a solution between mesh points that is evaluated in an auxiliary function. An approx-
imate solution YOUT at a point TOUT in the span of the last step is obtained by YOUT = IRKC_VAL(SOL,TOUT).
Some of the data held in fields of SOL for this purpose might be of direct interest, viz., the current approximation to
the first derivative of the solution, SOL%YP, and the size of the last step taken, SOL%HLAST.

A convenient way to see all the statistics is to CALL IRKC_STATS (SOL). Individual statistics are available as the
integer fields

SOL%NFE: number of evaluations of FE,
SOL%NFI: number of evaluations of FI,
SOL%NSTEPS: number of steps,
SOL%NACCPT: number of accepted steps,
SOL%NREJCT: number of rejected steps,
SOL%NFESIG: number of function evaluations used in estimating �(F ′

E),
SOL%MAXM: maximum number of stages used.

3.2. Specification of the task

Only a few quantities are required to specify the task and initialize the integration. This is done with a call

SOL = IRKC_SET(T0,Y0,TEND).

This says that the integration is to start at T0 with a vectorY0 of NEQN components as initial value and go to TEND.
It also says that the solution structure is to be called SOL. These arguments must appear, and in the order shown, but
the remaining, optional arguments can follow in any order because they are specified using keywords.

The solver must be told how many PDEs there are. This is 1 by default and any other value must be supplied with
the keyword NPDES. For example, if there are three PDEs, the call above is changed to

SOL = IRKC_SET(T0,Y0,TEND,NPDES= 3).

The most commonly used options are the error tolerances. RKC provides for a scalar relative error tolerance and a
vector of absolute error tolerances. To leading order the storage required is a multiple of NEQN. A guiding principle
of RKC, and especially IRKC, is minimize this multiple. Quite often users have scaled the variables so that a scalar
absolute error tolerance is appropriate. If not, they can always rescale the variables so as to do away with the need for
an array of NEQN absolute error tolerances. Accordingly, we have chosen to implement only a scalar absolute error
tolerance in IRKC. This decision makes the solver easier to use and simplifies the program. The default relative error
tolerance is 10−2 and the default absolute error tolerance is 10−3. The call just illustrated causes the solver to use these
default values. Other values are imposed with the keywords RE and AE. For example, to use a relative error tolerance
of 10−3 and the default absolute error tolerance, the call is changed to

SOL = IRKC_SET(T0,Y0,TEND,NPDES= 3,RE= 1D-3).

By default IRKC takes one step at a time, but it can be instructed to return only after reaching TEND by giving the
keyword ONE_STEP the value .FALSE. The methods for handling the explicit term FE involve an approximate bound
on the spectral radius of the Jacobian F ′

E. This can be supplied with a function in a manner described below, but the
default is to have the solver compute a bound. The cost of doing this can be reduced substantially when the Jacobian



492 L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497

is constant by giving the keyword CONSTANT_J the value .TRUE. Sometimes it is useful to impose a maximum step
size. This is done with the keyword HMAX. As described in Section 2.4, IRKC selects an initial step size automatically,
but a value can be supplied with the keyword H0.

It is sometimes useful to reset quantities and continue integrating. This is done by replacing the initial data T0,Y0
in the call list of IRKC_SET with the solution structure SOL. If the required argument TEND or any of the optional
arguments are changed, the new values replace those stored in SOL and SOL%DONE is changed to .FALSE. Of course,
NPDES cannot be changed. For example, we can instruct the solver to quit returning at every step with

SOL = IRKC_SET(SOL,TEND,ONE_STEP= .FALSE.)

and then call the solver again to continue on to TEND.
Unless instructed to the contrary, the solver will print a message and stop when a fatal error occurs. This response

to a fatal error can be changed with the optional argument STOP_ON_ERROR. Setting it to .FALSE. will cause the
solver to return with a positive value of the integer SOL%ERR_FLAG that indicates the nature of the error. In this
way a user can prevent an unwelcome termination of the run. Of course, if this report of a fatal error is ignored and the
solver is called again with a positive value of SOL%ERR_FLAG, it will print a message and stop.

3.3. Defining the equations

The differential equations are supplied as subroutines to IRKC. A typical invocation of IRKC looks like

CALL IRKC(SOL,F_E,F_I).

All three arguments in this call are required. The solution structure SOL is used for both input and output. F_E is
the name of a subroutine for evaluating the explicit part of (2). It is supplied just as for RKC, i.e., there is a subroutine
of the form F_E(NEQN,T,Y,DY) that accepts a vector Y of length NEQN, evaluates FE(t, y), and returns it as a vector
DY of length NEQN. As explained previously, the term to be handled implicitly must be defined in a particular way
that we now discuss more fully.

Let NPDES be the number of PDEs. The ODEs must be coded in blocks that correspond to grid points.
Specifically, for I = 1, NPDES + 1, 2 ∗ NPDES + 1, . . . , NEQN − NPDES + 1, the equations with indices
I, I + 1, . . . , I + NPDES − 1 must correspond to a single grid point. Accordingly there is to be a subroutine
of the form F_I(GRID_POINT,NPDES,T,YG,DYG,WANT_JAC,JAC). For an index I = GRID_POINT, it evaluates
FI(T,YG) for YG =Y(I : I + NPDES − 1). This value is returned as a vector DYG of NPDES components. The solver
also requires the Jacobian of this function, a matrix JAC of NPDES by NPDES entries. It is convenient to have this
computation in the subroutine where FI is evaluated, but it does not have to be done every time that FI is evaluated.
The logical variable WANT_JAC is used to inform the subroutine when JAC is to be formed along with DYG.

By default the solver approximates the spectral radius �(F ′
E) using a nonlinear power method. This is convenient

and often works well, but it can fail. When it is not too much trouble to supply a function that returns an upper
bound for �(F ′

E) of roughly the correct size, this should be done because the integration is then faster, more reliable,
and uses less storage. This function must have the form SR(NEQN, T,Y). Its name is supplied to the solver as an
optional fourth argument, but in the circumstances there is no point to using a keyword, so the call has the form

CALL IRKC(SOL,F_E,F_I,SR).

4. Numerical examples

In this section the use of IRKC is illustrated by means of two test problems. The Fortran 90 code for IRKC as well
as for the accompanying examples can be obtained by anonymous ftp from the address ftp://ftp.cwi.nl/pub/bsom/irkc.
IRKC can also be downloaded from netlib@netlib.org (send irkc.f90 from ode). To keep the codes for the test examples
as transparent as possible, we choose problems in one spatial dimension. This by no means implies that IRKC encounters
difficulties in solving problems in more spatial dimensions. On the contrary, the advantages of IRKC compared with
an implicit solver are more pronounced in more dimensions. This is because the stiffness in the explicit part increases
slowly with the number of spatial dimensions, whereas the stiffness of the part handled implicitly is confined to
individual grid points and so is independent of the number of dimensions. See also Example 2, where we discuss the
extension to two spatial dimensions and the comparison with an implicit solver.

ftp://ftp.cwi.nl/pub/bsom/irkc


L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497 493

Example 1. We begin with the solution of a system of ODEs that arises from semidiscretization of the reaction–diffusion
equation

ut = uxx + (1 − u)u2 for 0� t �10, 0�x�10, (18)

with initial and Dirichlet boundary values

u(x, 0) = 10(10 − x), u(0, t) = 100, u(10, t) = 0.

The term uxx is approximated by second-order central differences on a mesh {xm} with equal spacing of h to define
FE(t, y) and the other term is evaluated at mesh points to define FI(t, y). If ym(t) ≈ u(xm, t), a typical component of
FE is (yi−1(t) − 2yi(t) + yi+1(t))/h2 and a typical component of FI is (1 − yi(t))y

2
i (t). Evidently F ′

E is a constant,
tridiagonal matrix and F ′

I is a diagonal matrix with typical entry (2 − 3yi(t))yi(t). Using either Gershgorin’s theorem
or ‖F ′

E‖∞, we obtain easily the bound 4/h2 for �(F ′
E). For this simple example there is an analytical expression for

the eigenvalues which shows that the upper bound is very close to �(F ′
E). In the example program there are 50 ODEs

(h= 10
51 ) and the bound is about 104. On a time interval of length 10, we see that the diffusion part causes only moderate

stiffness. When the solver itself estimates a bound on the spectral radius, it computes values that range from 123 to
124. The solver computes a bound by estimating the spectral radius and, for safety reasons, increasing the estimate
by 20%. For this example the solver has evidently computed a good estimate of �(F ′

E). Because of the Dirichlet
boundary condition u(0, t) = 100, there is always an entry in F ′

I , hence an eigenvalue of this diagonal matrix, that is
approximately −3 × 104. We see that on a time interval of length 10, the reaction part of the PDE causes the ODEs to
be stiff. Accordingly, the example program computes solution profiles at times 0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10
to show the initial transient as well as illustrate how to obtain output at specific points. The (exact ODE) solutions at
these output points are shown in Fig. 1. Here, the facility offered by IRKC_VAL(SOL,TOUT) has been used to obtain
solution values at the intermediate output points. The solution structure SOL was initialized as

SOL = IRKC_SET(0D0,Y,10D0,RE= TOL,AE= TOL),

i.e., we took both the absolute and relative error tolerance equal to a parameter tol. For several values of tol, the
integration results are collected in Table 1. These results are obtained by

CALL IRKC(SOL,F_E,F_I,SR),

where the function SR provides the solver with the estimate 4/h2 for the spectral radius of F ′
E. As we can see from

this table, this rather simple problem has been integrated by IRKC without difficulties. Because the subroutine F_I is
called for each grid point, the total number of calls reported in Table 1 has been scaled by the number of grid points
(NEQN/NPDES). The ratio of the number of calls to FI and FE is an indication of the average number of modified
Newton iterations. This number is seen to be slightly larger than 2.5. IRKC follows standard practice in using a tolerance
on the error in evaluating an implicit formula that is a fraction of the tolerance on the local truncation error, specifically
0.5. As a result, the number of Newton iterations does not necessarily decrease when the tolerance is reduced. Notice
that the global error in t = 10, measured in the L2-norm, refers to the time integration error only. To measure this error
we first computed a time-accurate reference solution for the ODE system using a very stringent value for the tolerance
parameter. For an accurate solution of the PDE (18), the spatial resolution needs refinement as well.

Example 2. Our second example is a more substantial problem. It originates in radiation–diffusion theory and is a
1D version of a 2D problem described in [5]. Again, the reduction to 1D is motivated only by illustrative arguments;
the characteristic difficulties in this problem are maintained in the 1D version. Here we remark that the original 2D
problem has been discussed in our algorithm paper [10], where we have used a preliminary version of the IMEX code
to solve this problem (see also [4] where the 2D problem has been solved with RKC). In [10] we also compared the
performance of the IMEX code with that of a fully implicit solver, viz. the BDF-based code VODPK. This widely
used stiff solver is based on VODE [1], provided with the Krylov solver GMRES [2,6]. For the 2D radiation–diffusion
problem we found that the IMEX solver compares favorably with VODPK with respect to robustness and efficiency as
well as with respect to user-friendliness and storage demands.

This test problem consists of two strongly nonlinear diffusion equations with a highly stiff reaction term (an ide-
alization of non-equilibrium radiation–diffusion in a material). The dependent variables E and T represent radiation



494 L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 0

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 1e − 05

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 0.0001

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 0.001

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 0.01

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 0.1

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 1

0 2 4 6 8 10
0

50

100
Exact ODE sol. at t = 10

Fig. 1. Example 1: reference solution at several points in time.

Table 1
Example 1: results obtained at t = 10 with grid spacing h = 10

51

Quantity tol = 10−2 tol = 10−3 tol = 10−4

Number of successful steps 99 328 1062
Number of rejected steps 2 2 2
Evaluations of FE 413 1139 3374
Evaluations of FI/(NEQN/NPDES) 1035 2970 8936
Maximum number of stages used 20 16 11
Global error (discrete L2-norm) 1.03 × 10−3 1.49 × 10−4 4.07 × 10−5

energy and material temperature, respectively. One source of such problems is laser fusion. The equations are defined
on the unit interval in space for t > 0,

Et = (D1Ex)x + 
(T 4 − E), Tt = (D2Tx)x − 
(T 4 − E), (19)



L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497 495

with


 = Z3

T 3 , D1 = 1

3
 + |Ex |/E , D2 = kT5/2.

Here Z = Z(x) represents the atomic mass number which may varies in the spatial interval to reflect inhomogeneities
in the material. We suppose that the temperature diffusion coefficient k = 0.005 and Z(x) vary as

Z(x) =
{

Z0 if |x − 1
2 |� 1

6 ,

1 otherwise.

Here we take Z0 = 10. The initial values are constant in space,

E(x, 0) = 10−5, T (x, 0) = E(x, 0)1/4 ≈ 5.62 10−2,

and the boundary conditions are

1

4
E − 1

6

Ex = 1 at x = 0,

1

4
E + 1

6

Ex = 0 at x = 1,

Tx = 0 at x = 0, 1.

The solution of this problem has a steep temperature front moving to the right. For Z0 > 1, as it is here, the movement
is hampered at the interior of the interval. The radiation energy E is almost equal to T 4 except near the front where it
is slightly smaller.

We discretized the PDEs in space using a uniform cell-centered grid with grid size h= 1
100 by means of a second-order

central conservative scheme; details can be found in [4, Chapter V]. In principle this is straightforward, but the program
is somewhat complicated because of special cases and having to approximate the derivative in the diffusion coefficient
D1. The resulting system of ODEs is of dimension 2/h, so NEQN = 200. Integrating these ODEs accurately in time
to t = 3 gives the reference solution displayed in Fig. 2. Though we have chosen a grid spacing that gives an adequate
resolution of the solution of the PDEs, it should be understood that it is the solution of the system of 200 ODEs that
was computed accurately for the purpose of illustrating the code, not the solution of the PDEs.

The nonlinear power method used by default to calculate a bound on the spectral radius �(F ′
E) fails to converge for

this strongly nonlinear problem. However, following heuristic arguments, it is possible to derive an upper bound for
�(F ′

E). To that end we apply Fourier–von Neumann analysis with the diffusion coefficients D1 and D2 frozen at their
maximal value. Here we use some information about the solution. Observing that the temperature T is approximately
in the range [0.056, 1.35] (see Fig. 2), we arrive at the following bounds for the diffusion coefficients:

D1 � 1

3

= T 3

3Z3 <
1

Z3 �1, D2 = kT5/2>1.

Choosing D1 = D2 = 1 in the Fourier–von Neumann analysis, we conclude that �(F ′
E) is bounded by 4/h2 = 40, 000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0
0.5
1

1.5
2

2.5
3

3.5

Fig. 2. Example 2: reference solution at t = 3 with grid spacing h = 1
100 : radiation energy E (solid line) and temperature T (dashed line).



496 L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497

Table 2
Results obtained at t = 3 for test problem (19)

Quantity tol = 10−2 tol = 10−3 tol = 10−4

Number of successful steps 72 220 675
Number of rejected steps 20 34 3
Evaluations of FE 4133 7020 10 840
Evaluations of FI/(NEQN/NPDES) 8369 14 576 24 305
Maximum number of stages used 135 82 44
Global error in E (discrete L2-norm) 7.35 × 10−4 8.51 × 10−5 1.56 × 10−5

Global error in T (discrete L2-norm) 2.14 × 10−3 1.19 × 10−4 1.30 × 10−5

It is illuminating to estimate the stiffness caused by the reaction terms. It is easily verified that

F ′
I (E, T ) =

(−� �
� −�

)
with � = Z3

T 3 , � = Z3
(

1 + 3E

T 4

)
.

The eigenvalues of F ′
I are 0 and −(� + �). Since E ≈ T 4, � + � is dominated by the term Z3/T 3. Again using

information about the solution, we see that �(F ′
I ) is roughly 6000 Z3

0 = 6 × 106. This is quite large compared to the
length of the interval of integration, so the problem is stiff and an explicit treatment of the reaction terms is impractical.

We integrated the system of the two semi-discretized PDEs from time 0 to 3 and asked for output only at t = 3.
Again, we took both relative and absolute error tolerances to be equal to a parameter tol. The solver is told of all this
with

SOL = IRKC_SET(0D0,Y,3D0,RE= TOL,AE= TOL,NPDES= 2,ONE_STEP= .FALSE.).

We coded the evaluation of the explicit and implicit terms as subroutines called F_E and F_I, respectively, and the
upper bound on the spectral radius as a function called SR. The solver is then invoked with

CALL IRKC(SOL,F_E,F_I,SR).

The results of the integration are presented in Table 2 for several values of tol. For this example, we see that the ratio
of the number of calls to FI and FE is slightly larger than 2.

Acknowledgements

The authors are grateful to the referees for their constructive remarks. B. P. Sommeijer and J. G. Verwer acknowledge
support from the Dutch BSIK/BRICKS project.

References

[1] P.N. Brown, G.D. Byrne, A.C. Hindmarsh, VODE, a variable coefficient ODE solver, SIAM J. Sci. Statist. Comput. 10 (1989) 1038–1051.

[2] G.D. Byrne, Pragmatic experiments with Krylov methods in the stiff ODE setting, in: J. Cash, I. Gladwell (Eds.), Computational Ordinary
Differential Equations, Oxford University Press, Oxford, 1992, pp. 323–356.

[3] A. Guillou, B. Lago, Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, a pas séparés et a pas liés,
1er Congr. Assoc. Fran. Calcul AFCAL, Grenoble, September 1960, 1961, pp. 43–56.

[4] W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, Springer Series in
Computational Mathematics, vol. 33, Springer, Berlin, 2003.

[5] V.A. Mousseau, D.A. Knoll, W.J. Rider, Physics-based preconditioning and the Newton–Krylov method for non-equilibrium radiation diffusion,
J. Comput. Phys. 160 (2000) 743–765.

[6] Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.
7 (1986) 856–869.



L.F. Shampine et al. / Journal of Computational and Applied Mathematics 196 (2006) 485–497 497

[7] L.F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
[8] L.F. Shampine, L.S. Baca, Error estimators for stiff differential equations, J. Comput. Appl. Math. 11 (1984) 197–207.
[9] B.P. Sommeijer, L.F. Shampine, J.G. Verwer, RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math. 88 (1997) 315–326.

[10] J.G. Verwer, B.P. Sommeijer, An implicit–explicit Runge–Kutta–Chebyshev scheme for diffusion–reaction equations, SIAM J. Sci. Comput.
25 (2003) 1824–1835.

[11] J.A. Zonneveld, Automatic Numerical Integration, Mathematisch Centrum, Amsterdam, 1964.


	IRKC: An IMEX solver for stiff diffusion--reaction PDEs
	Introduction
	The IMEX RKC family
	Solving the implicit relations
	Local truncation error
	Error estimate
	Step size selection

	Software issues
	Form of the solution
	Specification of the task
	Defining the equations

	Numerical examples
	Acknowledgements
	References


