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1. Introduction

Consider the initial-value problem for a system of ordinary differential equations (ODEs) of the form

{y/(t)zf(y(t))Jrg(y(t)), t € [to, T], (11)
y(to) = Yo, .

where the functions f:R™ — R™ and g: R™ — R™ are assumed to be sufficiently smooth. In many practical applications
the terms f(y) and g(y) represent processes evolving on different time scales. For example f(y) may correspond to the
non-stiff and g(y) to the stiff processes. Such systems may arise from the semi-discretization in space variables of time
dependent partial differential equations (PDEs) such as, for example, advection-diffusion-reaction equations, or hyperbolic
conservation laws with relaxation. The advection-diffusion-reaction equation in one space variable x takes the form

dy [ day) _ 9 ( 9y
T ax _3x<d >+r(Y), x€la,bl, telto, T, (12)

0X

where the advection and diffusion coefficients a = a(x,t) and d = d(x,t) may depend on x and t but are independent of
the concentration y, and the term r(y) corresponds to sources, sinks, and chemical reactions. Discretization of the equa-
tion (1.2) in space variable x, with appropriate boundary and initial conditions, leads to the system of the form (1.1) with
f(y) corresponding to the discretization of the term —a(ay)/dx, and g(y) corresponding to the discretization of the term
d(ddy/dx)/dx +r(y). In one space dimension an example of a hyperbolic system with relaxation takes the form
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oy  9F(y) 1
at ax €

which takes the form (1.1) with f(y) corresponding to the discretization of —9F(y)/dx, and with g(y) corresponding to
R(y)/e.

We will discretize the non-stiff part of (1.1) by an explicit integration formula and the stiff part of (1.1) by an implicit
method. This leads to the class of so-called IMEX methods, and in this paper we will revisit the class of IMEX RK methods
analyzed before by Ascher et al. [1,2], Kennedy and Carpenter [23,24] (in a somewhat more general context of additive RK
schemes), Pareschi and Russo [26,27], Boscarino [4,5], Boscarino and Russo [7], Boscarino et al. [6], and Cardone et al. [11],
and systematically analyze such methods up to the order p = 4. We refer to the monograph [9] for the general theory of
RK methods.

IMEX two-step Runge-Kutta (TSRK) methods [21] were analyzed by Zharovsky et al. [34], and IMEX general linear meth-
ods (GLMs) [20] were analyzed by Zhang and Sandu [32,33], and Cardone et al. [10,12].

The organization of this paper is as follows. In Section 2 we introduce the class of IMEX RK methods and review the
order conditions for these schemes. In Section 3 we present the stability analysis of these methods. Design criteria for IMEX
RK methods are discussed in Section 4, and the construction of IMEX RK schemes with p=2,s=2, p=2,5s=3, p=3,
s=3,p=3,5s=6, and p =4, s=3, is described in Sections 5.1-5.5. The results of numerical experiments are presented in
Section 6 and in Section 7 some concluding remarks are given.

R(y), xela,b]l, telto,T], (1.3)

2. IMEX RK methods

Let N be a positive integer and define the stepsize h = (T —tp)/N, and the uniform grid t; =ty +ih, i=0,1,..., N. The
IMEX RK methods with s stages are defined by

i—1 i

Yi:J/n-‘thEiij-i-hZaijGj, i=1,2,...,s,

=1 =1

S (21)
Yn+1=yn+h2bij+thjGj,

=1 =1

n=0,1,...,N. Here,

Fi=f(Yp, Gj=g), j=12,...,s.

The explicit part of the IMEX method (2.1) can be represented by the abscissa vector ¢, the strictly lower triangular coeffi-

cient matrix A, and the vector of weights b,

c1=0
Gy | a2
cl A C3 asy as
T = : Do , (2.2)
b E o -
Cs as1 0Os2 -+ (Oss—1
b] b2 bsfl bs

and the implicit part of (2.1) can be represented by the abscissa vector ¢, the lower triangular coefficient matrix A with a
constant diagonal, and the vector of weights b,

(o8] A
C2|axn A
cl A C|a1 axn A
L e T ' (2.3)
Cs | Q51 G52 -+ Gss—1 A
b, by - bsq b
Putting
Y1 Fq G1
Yy=| : |, F=| : |, G=| : |,
Ys Fg Gs

the method (2.1) can be written in a more compact vector form
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Table 2.1

Order conditions for IMEX RK methods for p <3.
Order Order conditions for IMEX RK methods
p=1 ble= bTe=1
p= ble=1 ble=1
p= ble=1 bc=1
p=3 =1 bE=1
p=3 G o=1 b'co=1
p=3 BTc2=% chzz%
p=3 b Ac=1 b Ae=1
p=3 BTKC=% bTAc=1
p=3 bAc=1 b'Ac= 1
p=3 b'Ac=1 b'Ac=1

Table 2.2

Order conditions for IMEX RK methods for p =4.
Order Order conditions for IMEX RK methods
p=4 =1 b =1
p=4 @ o=1 b @.¢)=1
p=4 b=} b'@E )=
p=4 b=l b'c=1
p=4 b ©OTAc= ¢ (b-©TAc=]
p=4 - ©TAc=§ (b-©TAc=1]
p=4 - oOTAc=} (b-©TAc=1
p=4 ®-0TAc=} (b-0TAc=1
p=4 b-oTAc={ (b-oTAc=}
p=4 ®b-0TAc={ (b-0TAc=}
p=4 b-oTAc={ (b-o)TAc=}
p=4 ®-0TAc=} (b-0)"Ac=1
p=4 b A¢ = b’ AT = 5
p=4 b AT o= bTAC 0=
p=4 ETKCZ—% b'Ac? =
p=4 b AT = b'AS = &
p=4 bAC o= bTAC ¢ =
p=4 b AC = = bTAc? = 5
p=4 b'Ac= b A%e=
p=4 b AAT= b7 AAC=
p=4 BTKZC=2l4 bTK2c=2i4
p=4 b AAc= b’ AAc=
p=4 b AAC= b ARc = L
p=4 b A%= b’ A% =
p=4 ETAK(::i b'AAc= 3
p=4 b AZc= b'A%c= 1

Y=e®Dy,+h(AQDF +h(A® DG,
—T
Ynt1=Yn+h(d ®DF +h®d! DG,

n=0,1,...,N—1, where e=[1,...,1]T € RS, and I is the identity matrix of dimension s.
The order conditions for IMEX RK methods (2.4) were derived in [1,23,24,27]. For easy reference these order conditions
up to the order p =3 are listed in Table 2.1 and order conditions for p =4 are listed in Table 2.2.

(2.4)
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3. Stability analysis of IMEX RK methods

To analyze stability properties of IMEX RK methods (2.4) we consider the test equation

y'(t) =ry®) +11y(t), t=>0, (3.1)

Ao, A1 € C, where Ay (t) corresponds to the non stiff part and 1 y(t) to the stiff part of the problem (1.1). Applying (2.4)
to (3.1) we obtain

Y = yne + zoAY + z1AY,
- . (3.2)
Yn+1=Yn+20b Y +2z1b"Y,
n=0,1,..., where we have used the notation zo = hio, z1 = hi1.
Assuming that det(I — zopA — z1A) # 0 it follows from the first equation of (3.2) that
Y =(-20A—z1A) "eyn,
and substituting this relation into the second equation of (3.2) we obtain
Yn+1 = R(z0,21) yn, (3.3)
n=0,1,..., where the stability function R(zg, z1) is defined by
_’I‘ —
R(z0,z1) =1+ (zob +z1b")(I — z0A — z;A) " e. (3.4)
For IMEX RK methods (2.1) with coefficients defined by (2.2) and (2.3) this function takes the form
P (20, z1)
R(z9,21) = ——M—,
(1 —2zy)8
where p(zg, z1) is a polynomial of degree s with respect to zg and z;. For zg =0 we have
P(0, z1)

RO0,z))=14+z:bTA - z;A) le= —2"~
0,z1) =1+z1b" (I-2zA) A=z

which is the stability function of diagonally implicit RK method (2.3). For z; =0 we have

R(20.0) =1+ zob' (1—zoA)'e = P(z0.0),

which is the stability polynomial of explicit RK method (2.2).

As observed in [16] (see also [10-12]) in the context of IMEX #-methods good stability properties of explicit method
(2.2) and implicit method (2.3) are not sufficient to guarantee desirable stability properties of the overall IMEX scheme (2.1),
and it is necessary to investigate stability properties of these methods when both explicit and implicit RK formulas operate
in tandem as IMEX scheme. We are mainly interested in constructing methods which are A(a)- or A-stable with respect to
the implicit part z; € C and have large regions of stability with respect to the explicit part zg € C. To investigate methods
with these properties we define the appropriate stability regions which are subsets of C2 or C. The region of absolute
stability of the scheme (2.1) is defined as

A={@.20eC: [R@o.20)| =1},
For o € (0, r /2] we also define the following subsets of C
Ay = {z € C: Re(2) <0and |Im(2)| < tan(a)| Re(z)|},
and
Sy = {zo €C: |R(z0,21)| < 1for z3 eAa}.
We can interpret S, as the region of absolute stability of the explicit part of (2.1) assuming that the implicit part of (2.1)
is A(a)-stable. In particular, Sy is the stability region of explicit part of (2.1) assuming that the implicit part of (2.1) is

A-stable.
For fixed y € R we also define the set

Say = {zo €C: |R(zo,21)| < 1forz; = —|y|/ tan(er) —I—iy}.

The set Sy o corresponding to y =0 is independent of ¢, and it is equal to the region of absolute stability of the explicit
RK method (2.2). This set will be denoted by Sg. We have
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Soz CSE,

and similarly as in [10-12], we will search for IMEX RK schemes (2.1) for which S, contains a large part of Sg for some
o € (0, 7 /2], preferably for a = 7 /2. The design criteria of IMEX RK methods are discussed in Section 4.

Similarly as in [10-12] the boundary 9Sy.y of Sy y can be computed by the boundary locus method which computes
the locus of the curve

0Su.y = {zo € C: R(z0, —lyl/tan(a) +iy) =€, 6 €0, an]],

where k is a positive integer. In [10] we described also an algorithm to compute the boundary 9S,, of the stability region S,
for o € (0, 7w /2]. This algorithm is based on the relation

S = ﬂ Sa,y» (3.5)
yeR

which follows from the maximum principle. In this algorithm for fixed direction m = —tan(«), and for fixed z; =
—|yl/tan(x) + iy we compute, by the bisection method, the intersection of the boundary 0Sy, with the ray yo =
—tan(o)xp. Then we look for a point zg € C with minimum value of ¥y = —Im(Zp). Such a point belongs to the boundary
0S8y of the stability region S,. We refer to [10] for a detailed description of this algorithm. A somewhat different approach
to compute 39S, is presented in [26].

4. Design criteria for IMEX RK methods

In this section we describe the design criteria which will be used to construct IMEX RK schemes (2.1) with some desirable
stability properties.

The first design criterion is based on maximizing the area of the region of absolute stability Sg of explicit RK
method (2.2). This area can be computed by numerical integration in polar coordinates as described in [3]. Such meth-
ods are obtained by the solution of the minimization problem

—area(Sg) —> min, (4.1)
with equality constrains
®,(c,A,b,c,A,b) =0, (4.2)

where the function &, represents order conditions up to the order p. These order conditions are listed in Table 2.1 for
p <3 and in Table 2.2 for p =4.

The second criterion is based on maximizing the area of S, for fixed « € (0, 7 /2]. Such methods are obtained by the
solution of the minimization problem

—area(Sy) —> min, (4.3)

o € (0, /2], with the same as before equality constrains (4.2).

The third design criterion is based on maximizing the strong stability preserving (SSP) coefficient of the explicit RK
method (2.2). This leads to the so-called SSP methods, compare [13,14]. To describe this criterion assume that the dis-
cretization of the problem (1.1) with g(y) =0 by the forward Euler method

Yn1=Yn+hf(yn),

n=0,1,..., N —1, satisfies the monotonicity condition

I ynerll < lynll (44)
in some norm or seminorm || - ||, for a suitably restricted time step h determined by the CFL condition

h< hFE~ (4-5)

Then we will look for IMEX RK schemes of order p such that the explicit part (2.2) of the scheme preserve the monotonicity
property (4.4), under the perhaps modified restriction on the step size h

h <C- hFE (4-6)
measured by the SSP coefficient C > 0 of the explicit RK method (2.2). Consider the RK method (2.2) and define the matrices
T _1?_ 0 e RO+DXG6+D g |:£i| cRSH.
b |0 1

These are the coefficient matrices of the representation of RK method (2.2) as general linear method (GLM) which was
considered by Spijker [31]. Denote by I the identity matrix of dimension s+ 1, and let [S|yT], ¥ € R, stand for the (s+1) x
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(s 4 2) matrix whose first column is equal to S and the last s 4+ 1 columns are equal to ¥ T. Next, following Spijker [31] we
consider the conditions

det@+yD#0 and (A+yD7'[S|yT]|>0, (4.7)

where the above inequality should be interpreted componentwise. Then it follows from the result by Spijker [31] that the
SSP coefficient of the method (2.2) (or, in general, of the GLM defined by T and S) is given by

C=C(T,S) =sup {y eR: y satisfies (4.7)]. (4.8)

The conditions (4.7) can be reformulated in terms of A and b. Since A is strictly lower triangular we have det(I+ yA)#£0
which implies that det(I+ ¢ T) # 0, and it can be verified that the conditions (4.7) can be reformulated as

(1+yA) 'e>0, 1—(1+yA)"' >0,
(4.9)
1—yb (I+yA) 'e>0, yb (1+yA) ' >0.

Then it follows that the characterization of the SSP coefficient (4.8) for the representation of RK method (2.2) as GLM with
coefficients T and S can be reformulated in terms of A and b as

C=C(,b)=sup [y eR: y satisfies (4.9)}. (4.10)
Similarly as in [17-19,25], this coefficient can be computed by the solution to the constrained minimization problem

F(y,c,A,b,c,A,b) = —y — min, (411)

with inequality constrains (4.9) and equality constrains (4.2) in the form of order conditions up to the order p.
5. Construction of IMEX RK methods

In this section we describe the construction of highly stable IMEX RK schemes up to the order p =4 using the design
criteria which were discussed in Section 4.

5.1. IMEX RK schemes with p =2 and s =2

Solving the order conditions up to p =2 we obtain a two-parameter family of IMEX RK schemes with coefficients

— 0 A A
c| A azy a1 c|l A
= 1=2 121 = a + A az A
b 242a,,-1 13 b ‘ 242 -1 1-20.
2a;31 2a;31 2az1 2az1

The stability function of this scheme is R(zp, z1) = P(z0, z1)/Q (20, z1) with

2
z 1
P(0.21) = 1+20+ 2+ (1 =20z + (1 = 20z0z + (5 — 22+ 22) 24,

and

Q(20,21) = (1 — rz1)%.

The Nersett polynomial [15] of the implicit part of the scheme corresponding to zp = 0 is independent of a,; and is given
by

. . . . 1 2.4
E(y) = Q0.i9)Q (0, —iy) = PO, iy)P(O0, —iy) = (3 - Z)“ —20)2y*,

Hence, it follows that the implicit RK method is A-stable if and only if A > 1/4. Moreover, this method is L-stable if and
only if A = (2 £ +/2)/2, which are the roots of the polynomial 12 — 22 + 1/2.

Choosing a1 =1/(1 — 2A) we obtain a one parameter family of IMEX schemes of order p =2 proposed by Pareschi and
Russo [27]. The coefficients of these methods are given by

Y 0 A

c|A
—=1 , CA=1—A‘
b’ ‘

A
1-2x

=]
N= [ >

N[ = |

1
2

N—=
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Fig. 5.1. Area of stability region Sy versus A for « =7 /2 and o =7 /4.

-2.5 -2 -1.5 -1 -0.5 0 0.5

Re(z,)

Fig. 5.2. Stability regions Sy /2.y, ¥y =—2.0,—1.8,...,2.0 (thin lines), Sy ,> (shaded region) for A = (2 — ﬁ)/z, and Sg (thick line) of the IMEX scheme
with p=2 and s =2.

-25 -2 -1.5 -1 -0.5 0 0.5
Re(zo)

Fig. 5.3. Stability regions Sz /2.y, y =—2.0,—1.8,...,2.0 (thin lines), Sz,> (shaded region) for A =0.4918055243674397, and Sg (thick line) of the IMEX
scheme with p=2 and s =2.

It can be verified that the explicit RK method has SSP property with the effective SSP coefficient Cefy = C/s, i.e., SSP
coefficient C scaled by the number of stages s, equal to Cesy = 1/2. This is equal to the optimal value (s —1)/s =1/2 for
explicit RK method of order p =2 with s =2 stages, compare [13].

We have plotted on Fig. 5.1 the area of the stability region S, versus A for & =7 /2 and o = 7 /4. For o = 71 /2 this area
attains its maximum values approximately equal to 5.83 for A = 0.4918055243674397, and for o = 7w /4 this area attains its
maximum value again approximately equal to 5.83 for A = 0.345. The resulting methods will be denoted by IMEX-RK22S7 2
and IMEX-RK22S7 /4. The points corresponding to these methods are marked by the black circles on Fig. 5.1. We have also
marked by the black squares the points corresponding to the L-stable implicit RK methods. These points are 1 = (2 — +/2)/2
for which the area of Sy is approximately equal to 4.09 for o = 7 /2 and approximately equal to 5.65 for o = 7 /4, and
A = (2 + +/2)/2 for which the area of S, is approximately equal to 4.00 for o = /2, and approximately equal to 5.66
for « = /4. The IMEX schemes corresponding to these values of A are denoted by IMRX-RK22Lm and IMRX-RK22Lp,
respectively. We have also plotted on Fig. 5.2 stability region Sy /2 corresponding to A = (2 — V/2)/2 (shaded region) and
stability region Sg of the explicit method (thick line). To illustrate the relation (3.5) we have also plotted by thin lines
stability regions Sy,2,y for y = —2.0,—1.8,...,2.0. On Fig. 5.3 we have plotted stability region Sy, corresponding to
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Re(zo)

Fig. 5.4. Stability regions Sy /2.y, y =—2.0,—1.8,...,2.0 (thin lines), Sy > (shaded region), and Sg (thick line) for the IMEX scheme with p =2 and s =3
with maximal area of Sg.

A =0.4918055243674397 (shaded region) and stability region Sg of the explicit method (thick line). As before we have also
plotted by thin lines stability regions Sy /2y for y = —2.0,—1.8,...,2.0. In this case the regions Sy, and Sg are almost
identical and cannot be distinguished on Fig. 5.3.

5.2. IMEX RK schemes with p =2 and s =3

Solving the order conditions up to p =2 we obtain a six-parameter family of IMEX RK schemes with coefficients

- 0 A A
c|l A azq azq c| A a1+ A a; A
p’ Gt |@n dp» pT — @i1+0a3+A a3 an Ao
| by Dy bs | b, by bs

where by, by, bs, b1, by, and b3 depend on the free parameters dyq, G31, G32, 021, @31, and azy.
We will search first for IMEX schemes with maximal area of the region of absolute stability Sg of the explicit method
(¢, A, b). Solving the minimization problem (4.1) we obtain the IMEX scheme with coefficients

c= [ 0 1.001189204627373 0.838063598174237 ]T ,

B 0 0 0
A= 1.001189204627373 0 0,
0.253545544784129  0.584518053390108

b= [0.480520005477614 0.396275778012860 0.123204216509527 ]T ,

c= [0.743134194610956 —0.898043878577327 4.048418175438741 ]T ,

0.743134194610956 0 0
—1.641178073188283 0.743134194610956 0
1.132080119545815 2.173203861281970 0.743134194610956

A

b= [0.480520005477614 0.396275778012860 0.123204216509527 ]T .

This methods will be denoted by IMEX-RK23Sk.

We have plotted on Fig. 5.4 stability region Sy > (shaded region) and stability region Sg of the explicit method (thick
line). We have also plotted by thin lines stability regions Sz /2,y for y =—2.0, —1.8,...,2.0. The area of Sg is approximately
equal to 16.62 and the area of Sy is approximately equal to 11.73. It can be verified using (4.9) and (4.10) that the explicit
RK method (c, A, b) has SSP property with the effective SSP coefficient Cefr = 0.144. This is quite far from the optimal value
which, for explicit RK method of order p =2 with s = 3 stages, is equal to (s — 1)/s = 2/3, compare [13]. However, we
will find IMEX schemes for which the explicit RK method has optimal SSP coefficient using the third design criterion from
Section 4. It can be also verified that the implicit method (c, A, b) is A-stable but not L-stable.

We will search next for IMEX schemes with maximal area of the region Sy for o = 7 /2. Solving the minimization
problem (4.3) we obtain the IMEX scheme with coefficients

E:[O 0.577185900656255 1.047384863251074]T,

~ 0 0 0
A= | 0.577185900656255 0 :
0.659759720087210 0.387625143163863 0
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Re(z,)

Fig. 5.5. Stability regions Sy /2.y, y =—2.0,—1.8,...,2.0 (thin lines), Sy > (shaded region), and Sg (thick line) for the IMEX scheme with p =2 and s =3
with maximal area of Sy /,.

b= [ 0.396284461794023 0.281418137752127 0.322297400453850 ]T ,

c= [0.331054829332169 1.041645102768150 0.234784053509575 ]T ,

0.331054829332169 0
A= 0.710590273435981 0.331054829332169 0
—0.126881367560843 0.030610591738250 0.331054829332169

b= [ 0.396284461794023 0.281418137752127 0.322297400453850 ]T .

This methods will be denoted by IMEX-RK23Sy /.

We have plotted on Fig. 5.5 stability region Sy /> (shaded region) and stability region Sg of the explicit method (thick
line). We have also plotted by thin lines stability regions Sy 2,y for y = —2.0,—1.8,...,2.0. The areas of Sg and Sy, are
approximately equal to 16.62. These areas cannot be distinguished on Fig. 5.5. It can be verified using (4.9) and (4.10) that
the explicit RK method (¢, A, b) has SSP property with the effective SSP coefficient Ceff = 0.445. It can be also verified that
the implicit method (c, A, b) is A-stable but not L-stable.

Finally, we will search for IMEX schemes for which the explicit RK method (c, A, B) has the maximal SSP coefficient.
Solving the minimization problem (4.11) with inequality constrains (4.9) leads to a scheme with coefficients given by

0 000 3
c=|1|, A=|3 00|, b=|1
_2, —2 9 _37

1 1
1 2 20 3

c= [ 0.204976822001215 0.686915776921670 0.608107401077115 ]T ,

0.204976822001215 0 0

A= | 0.481938954920455 0.204976822001215 0 ,
0.250998127128454 0.152132451947445 0.204976822001215
11 177

b=[3 3 3]

This methods will be denoted by IMEX-RK23SSP.

We have plotted on Fig. 5.6 stability region Sy /> (shaded region) and stability region Sg of the explicit method (thick
line). We have also plotted by thin lines stability regions Sy 2, for y =—2.0,—1.8,...,2.0. The area of Sg is approximately
equal to 15.87 and the area of Sy, is approximately equal to 12.55. We can observe that the area of Sg and the interval
of absolute stability are somewhat smaller than the corresponding areas and intervals of stability of explicit RK methods
(c,A, E) obtained by the first two of the design criteria from Section 4. However, in this case the explicit RK method (c, A, 5)
has SSP property with the optimal effective SSP coefficient Cefy = (s —1)/s = 2/3. This explicit RK method was also obtained
by Pareschi and Russo [27] as explicit part of IMEX scheme with implicit part which is stiffly accurate. It can be also verified
that the implicit method (c, A, b) listed above is A-stable but not L-stable.

5.3. IMEX RK schemes with p =3 and s =3

In this section we consider IMEX schemes with diagonally implicit Runge-Kutta (DIRK) methods with A1, A3, and A3 on
the diagonal of the coefficient matrix A. Solving the order conditions up to the order p =2 with respect to by, by, bs, by,
by, and b3 leads to methods for which b =b. Solving next order conditions corresponding to p =3 with respect to a1, asi,
asy, a1, 431, a3z, and A3 we obtain a two parameter family of methods depending on A1, and Ay. The coefficients of the
resulting IMEX scheme are given by
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Fig. 5.6. Stability regions Sy /2.y, y =—2.0,—1.8,...,2.0 (thin lines), Sy > (shaded region), and Sg (thick line) for the IMEX scheme with p =2 and s =3
with maximal SSP coefficient.
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Fig. 5.7. Area of stability region S, versus A1 for « =7 /2 and o =7 /4.
[0 0 0O 0
=_ |1 a_ 1 H_| 3
Cc= 3 N A= 3 0o 0], b= fll 5
| 1 -120 1
A1 A 0 0 0
_| 1 _ 1-34 _| 3
C= § N A— Tz }\.2 0 3 b— 4
|1 —1+4+3% 2-3x 0 1

The Nersett polynomial [15] of the implicit part of the scheme corresponding to zg = 0 is given by E(y) = asy* + agy® with

1—4n -4+ 1204 (1 =3i1 — 342 +6A1112)2

a4q4 = , g =
4 12 6 36

To obtain A-stable methods we have to assume that ag = 0. This leads to 1, = (1 —3X1)/(3(1 — 241)) and results in one
parameter family of implicit RK methods with coefficient matrix A given by

M 0 0
A 1-3)
A= sa-my 302 9 |
M 1—Xq 0

1-214 1-21

and the same vectors ¢ and b as before.

We have plotted on Fig. 5.7 the area of the stability region S, versus A1 for « = /2 and o = 7 /4. For o = 7t /2 this area
attains its maximum values approximately equal to 5.38 for A1 = 0.7886866510998523, and for o = ;v /4 this area attains
its maximum values approximately equal to 8.26 for A1 = 0.7886270683133974. The resulting methods will be denoted
by IMEX-RK33Sy 2 and IMEX-RK33Sy 4. The points corresponding to these methods are marked by the black circles on
Fig. 5.7.

Choosing A1 = (3 + «/§)/6 leads to implicit RK method for which A1 = A;. The coefficients of this method are

3+6ﬁ 3+(;/§ 0 0 0

c=| 1 A=| 18 3445 o | b= 3
3

1443 1-3 1

1 2 2 0 4
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Fig. 5.8. Stability regions Sy 2,y, y =—2.0, —1.8,...,2.0 (thin lines), Sy 2 (shaded region), and Sg (thick line) of IMEX-RK33A.

This method will be denoted by IMEX-RK331. We have also plotted on Fig. 5.8 stability region Sy, corresponding to
1 = A2 = (34 +/3)/6 (shaded region) and stability region Sg of the explicit method (thick line). We have also plotted by
thin lines stability regions Sy /2y for y =—2.0,—-1.8,...,2.0. The area of S is approximately equal to 9.03.

It can be verified that the second condition of (4.9) takes the form

0 0 0
I-A+yA ' = 5 0 0f=o
~WEYE 9y 0
This condition can be satisfied if and only if ¥ =0, and it follows that the explicit RK method (c, A, 5) does not have SSP
property.

5.4. IMEX RK schemes with p =3 ands =6

In this section we consider IMEX schemes of order p =3 with s =6 stages. We will search first for IMEX methods
with maximal area of the region of absolute stability Sg of the explicit method (c, A, b). Solving the minimization prob-
lem (4.1) with equality constrains (4.2) corresponding to p = 3 leads to the method which, in Matlab rational format, has
the following coefficients

c= [ 0 83 1537 2171 846 667 ]T
- 242 4715 2565 683 602 ’
0 0 0 0 0 07
83
5 0 0 0 0 0
249 307
A_| 377 i 0 0 0 0
- _ 239 1080 737 0 0 0 ’
1758 1687 2154
220 524 1579 810 0 0
5231 793 4141 809
701 861 1487 809 _ 135
L 7073 1844 1443 1433 1132 .
E_ [_ 181 3288 247 31 513 238 ]T
- 5045 4885 1657 1684 3415 3231 ’
c=[ 1247 885 166 039 943 1159 ]T
- 2772 5722 129 866 42 415 ’
r 1247 ]
5775 0 0 0 0 0
405 1247
1372 2772 0 0 0 0
1715 784 1247
A= 1951 T 18635 2772 0 0 0
= 651 346 4367 1247 0 0
866 1555 19788 2772
59 947 235 288 1247 0
1491 1201 343 1999 772
635 163 1027 1103 565 1247
L 1659 829 1136 1620 88 2772 -
b= [_ 181 3288 247 231 513 _ 238 ]T
- 5045 4885 1657 1684 3415 3231 .

This method will be denoted by IMEX-RK36SE. The coefficients of this method in double precision can be obtained from
the authors. The area of stability region Sg of the explicit method (c, A, b) is approximately equal to 20.57, and the area of
the stability region Sy, is approximately equal to 8.86. The explicit method is not SSP. We have plotted on Fig. 5.9 stability
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Fig. 5.9. Stability regions Sz /2.y, y =—6.0,—5.4,...,6.0 (thin lines), Sz > (shaded region), and Sg (thick line) of IMEX-RK36SkE.

region Sy 2 (shaded region) and stability region Sg of the explicit method (thick line). We have also plotted by thin lines

stability regions Sy 2,y for y =—6.0,-5.4, ..

., 6.0. It can be also verified that the implicit method (c, A, b) is A-stable.

We will search next for IMEX schemes with maximal area of the region S, for o = /2. Solving the minimization
problem (4.3) with equality constrains (4.2) we obtain the IMEX scheme with coefficients

c=[ o 243 1231 223 673 1652 ]T
- 1945 1834 5417 364 1245 ’
-0 0 0 0 0 0]
243
25 0 0 0 0 0
2988 422
A_ | 3t 275 0 0 0 0
= 1434 1522 71 0 0 ol
2177 2231 4019
817 _ 768 631 113 0 0
10401 1843 680 1492
540 859 1235 1912 1762 g
— 2599 915 1813 025 7705 -
b= [ 14 _ai 830 430 427 85 ]T
- 143 3097 1311 847 9602 737 ’
c=[ 3% i 853 1168 2325 2473 ]T
- 949 977 1622 1909 578 869 ’
395 ]
39 0 0 0 0 0
1527 395
3900 949 0 0 0 0
210 165 395
a—| o1 s s O 0 0
= _ 499 1817 433 395 0 o |
1637 5159 2921 949
2015 1015 1791 251 395 0
1298 1192 1630 2423 949
636 139 2331 103 _ 283 395
575 141 2332 199 1961 949 _|
b=[ 134 _ 413 830 430 _ 427 Q]T
- 143 3097 1311 847 9602 737 :

This method will be denoted by IMEX-RK36Sy 2. The coefficients of this method in double precision can be obtained from
the authors. The area of stability region S of the explicit method (c,A, b) is approximately equal to 10.06, and the area
of the stability region Sy, is approximately equal to 9.95. The explicit method is not SSP. We have plotted on Fig. 5.10
stability region Sy, (shaded region) and stability region Sg of the explicit method (thick line). These regions are almost
identical and cannot be distinguished on the Fig. 5.10, except the regions close to the imaginary axis. We have also plotted
by thin lines stability regions Sy 2y for y =—6.0,—5.4,...,6.0. It can be also verified that the implicit method (c, A, b) is
A-stable.

Finally, we will search for IMEX schemes for which the explicit RK method (c,A,b) has the maximal SSP coefficient.
Solving the minimization problem (4.11) with inequality constrains (4.9) and equality constrains (4.2) leads to an IMEX
scheme, where the explicit methods has s =5 stages. The coefficients of this scheme are given by

478

1267

873
1157

373
577

o 903

[ o
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Fig. 5.10. Stability regions Sy /2.y, y =—6.0,—5.4,...,6.0 (thin lines), Sz /> (shaded region), and Sg (thick line) of IMEX-RK36S />.

0 0 0 0 0
478
1967 0 0 0 0
A 478 478
A= 1267 1267 0 0 01.
476 476 476 0 0
2209 2209 2209
762 637 637 1498 0
3697 4843 4843 505
B—[ 159 210 213 605 397 ]T
- 707 1793 1819 2951 182 1
c—[ 1934 0 478 873 373 903 ]T
- 4175 1267 1157 577 1291 ’
- 1934 T
175 0 0 0 0 0
1934 1934
T 4175 4175 0 0 0 0
461 203 1934
A= 1770 ~ 586 4175 0 0 0
—| _876 889 478 193 0 0 ’
545 437 3523 4175
1081 19144 1597 391 1934 0
1934 78703 1624 1073 4175
339 300 353 _ 213 244 1934
L 773 9379 1743 115 1597 4175 4
b=[ 0 431 671 327 385 691 ]T
1916 5743 2791 1868 063 1 -

This method will be denoted by IMEX-RK36SSP. The coefficients of this method in double precision can be obtained from
the authors. The area of stability region Sg of the explicit method (¢, A, b) is approximately equal to 33.03, and the area of
the stability region Sy, is approximately equal to 6.19. The explicit method (c, A, b) has SSP property with the effective
SSP coefficient Cefy = C/5 = 0.530. We have plotted on Fig. 5.11 stability region Sy,» (shaded region) and stability region
Sg of the explicit method (thick line). We have also plotted by thin lines stability regions Sy 2,y for y =—6.0, -5.4,...,6.0.
The implicit method (c, A, b) is not A-stable.
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Fig. 5.12. Stability regions Sz /2.y, y =—6.0,—5.4,...,6.0 (thin lines), Sy /> (shaded region), and Sg (thick line) of IMEX-RK48SE.

5.5. IMEX RK schemes with p =4 and s = 8

In this section we consider IMEX schemes of order p =4 with s =8 stages. We will search first for IMEX methods
with maximal area of the region of absolute stability Sg of the explicit method (c, A, b). Solving the minimization problem
(4.1) with equality constrains (4.2) corresponding to p =4 leads to the method which, in Matlab rational format, has the

following coefficients

= _ 326
c=[0 5

0

326
1379

_ 1450
19477

128
15375

377
7459

39
10744

113

5084

_ 372

| 3299

43

>|
Il

=3
Il

o
I
—

— 43
b= [ 142610

1749 1966
7034 2349
0 0
0 0
1031
3191 0
_ 69 873
1555 7000
959 119
1044 70006
181 254
216294 1269
902 127
2137 6960
195 581
8234 1495
485 849
3662 1915
200 142 763
847 571 911
0
1095
3943 0
_ 116 1095
1149 3943
283 1897
674 1287
1243 _ 859
331 554
1471 _ 1100
425 317
1151 238
318 369
2337 339
281 409
485 849
3662 1915

(=)
S
w

2194

57
7948
569
622

502

1401
694

501

1123 1729 561 ]T
1129 2381 397 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
179
1766 0 0
713 492 0
10786 2585
207 169 255
2612 2983 4057
_ 73 318 339
2952 3289 31053
5197 766 8612 ]T
5196 953 6615
0 0 0
0 0 0
0 0 0
0 0 0
1095
3943 0 0
77 1095 0
6619 3943
971 1341 1095
630 572 3943
2521 _ 4265 4247
872 788 2011
73 318 _ 339
2952 3289 31053

O O ©O O O o o

o

47
24734

)

o ©O © O o o

0

1095
3943

47
24734

I

.

This method will be denoted by IMEX-RK48Sg. The coefficients of this method in double precision can be obtained from the
authors. The area of stability region Sk of the explicit method (€, A, b) is approximately equal to 19.36, and the area of the
stability region Sy, is approximately equal to 7.06. The explicit method is not SSP. We have plotted on Fig. 5.12 stability
region Sy 2 (shaded region) and stability region Sg of the explicit method (thick line). We have also plotted by thin lines
stability regions Sy 3,y for y =—6.0, —5.4,...,6.0. It can be also verified that the implicit method (c, A, b) is A-stable.
We will search next for IMEX schemes with maximal area of the region S, for o = /2. Solving the minimization
problem (4.3) with equality constrains (4.2) we obtain the IMEX scheme which, in Matlab rational format, has the following

coefficients

—_ 1378
c=[ 0 285

132 16115

2885 29712

389
670

327
200

992

383

2648 ]T’

695
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0 0 0 0 0 0 0 0
1378
=183 0 0 0 0 0 0 0
41 361
T 24173 7608 0 0 0 0 0 0
52 1975 64
A— 10845 3728 8201 0 0 0
= 7 _.8 573 653 0 0 0 0
7667 2993 2038 2168
_ 29  _ 139 508 1341 917 0 0 0
18805 16295 17301 2436 852
153 625 543 595 511 275 0 0
1705 364 3089 5118 5378 694
1546 613 61 460 398 594 467 0
L 787 2040 3045 909 5743 863 1786 J
b= [ 0 o 1265 5 3055 591 _ 152 25 ]T
5853 3733 2101 13898 30203 249031 1 >
c— [ 217 469 132 16115 389 327 992 2648 ]T
=Ll 384 1878 2885 29712 670 200 383 695 1 °
- 217 -
s 0 0 0 0 0 0 0
95 217
16208 849 0 0 0 0 0 0
620 1264 217
1539 2063 849 0 0 0 0 0
762 1357 241 217
A—| 253 3196 1457 849 0 0 0 0
= 861 963 56 _ 443 217 0 0 0
5003 1726 1329 2302 849
2822 _ 2477 2407 3079 _ 5392 217 0 0
3 316 601 404 1615 849
_ 1119 _ 1583 5987 _ 3054 520 2337 217 0
2579 160 628 745 99 1183 849
_ 2282 1880 9181 6049 _ 5507 _ 1559 2965 217
L~ 1087 791 55 741 556 274 507 849 -
b= [ 0o o 1265 5 3055 591 _ 152 25 ]T
5853 3733 2101 13898 30203 249031 1 -

85

This method will be denoted by IMEX-RK48Sy . The coefficients of this method in double precision can be obtained from
the authors. The area of stability region Sg of the explicit method (¢, A, b) is approximately equal to 13.87, and the area
of the stability region Sy, is approximately equal to 11.02. The explicit method is not SSP. We have plotted on Fig. 5.13
stability region Sy /2 (shaded region) and stability region Sg of the explicit method (thick line). We have also plotted by
thin lines stability regions Sy /2,y for y = —6.0,-5.4,...,6.0. It can be also verified that the implicit method (c, A, b) is
A-stable.

As in previous sections we will search next for IMEX schemes for which the explicit RK method (¢, A, b) has the maximal
SSP coefficient. Solving the minimization problem (4.11) with inequality constrains (4.9) and equality constrains (4.2) leads
to an IMEX scheme with coefficients given by

s __ 641 275 1268 521 799 879 1T
€= [ 0 0 1353 588 703 570 171 1063] ’
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Fig. 5.14. Stability regions Sy /2.y, y =—6.0,—5.4,...,6.0 (thin lines), Sy > (shaded region), and Sg (thick line) of IMEX-RK48SSP.

B 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0
966
0 5030 0 0 0 0 0 0
199 735
A= 0 5291 1709 0 0 0 0 0
= 306 533 773 )
0 373 1060 628 0 0 0 0
61 552 881 52
0 10399 8267 1054 9395 0 0 0
184 141 826 1567 1754 161 0 o0
2869 3059 1929 757 977 599
0 27 227 53 569 859 0 0
L 359 338 557 1644 1966 .
T 277 85 587 31 665 3 9T
b=[ 0 1720 1314 1885 18247 2006 O 5731 I
c=[ 1026 641 275 1268 521 3127 879 ]T
=Ll 3919 1353 58 703 570 657 1063 1
- 1026 -
3979 0 0 0 0 0 0 0
1148 1026
4385 3919 0 0 0 0 0 0
1165 904 1026
2683 1399 3919 0 0 0 0 0
1480 1469 121 1026
A— 2439 3070 ~ 3026 3919 0 0 0 0
= _27ss 2069 722 411 1026 0 0 o |’
397 294 339 652 919
165 105 133 1307 55 1026 0 0
12667 671 500 5430 26474 3919
837 629 1195 _ 5209 1045 2767 1026 0
1003 1976 149 618 1459 11 3919
752 771 3197 2313 2267 2128 0 1026
L T 647 2338 469 586 2341 75 3919 -
_ 277 385 587 31 665 23 7T
b=[ 0 1720 1314 1885 18247 06 O 5731 ]

This method will be denoted by IMEX-RK48SSP. The coefficients of this method in double precision can be obtained from
the authors. The area of stability region Sg of the explicit method (c, A, b) is approximately equal to 12.90, and the area of
the stability region Sy, is approximately equal to 2.64. The explicit method (c, A,b) has SSP property with the effective
SSP coefficient Cefs = C/5 = 0.023. We have plotted on Fig. 5.14 stability region Sy > (shaded region) and stability region
S of the explicit method (thick line). We have also plotted by thin lines stability regions Sy 2 y for y =—6.0,—-54,...,6.0.
The implicit method (c, A, b) is not A-stable.

6. Numerical experiments
6.1. Van der Pol oscillator

As first test problem for our numerical experiments we consider the van der Pol oscillator (see VDPOL problem in [15])

Yi=Y2,
{yé = (1 —yhHy2—y1)/e, (61)
t € [0, T], with initial conditions
2 10 292 , 1814 4 4
y1(0) =2, y2(0)=_§+8—18—7875 — 196838 +0(&%), (6.2)
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Fig. 6.1. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p =3 and p =4 on the van der Pol problem (6.1)-(6.2) with
e=10"1,

with a stiffness parameter €. We write the system (6.1) as (1.1), by setting

fly)= [yoz} and g(y) = [ (a —y%)J?Z - y1)/e } '

We have implemented the methods constructed in this paper with a fixed stepsize h, and observed the order of con-
vergence of the numerical approximations to the slowly varying parts of the solution, where the problem is stiff for small
values of the parameter €. We compare the numerical results for the solution all over the integration grid with a reference
solution computed by the Matlab function ode15s with very tight tolerances atol = 10~ and rtol = 10~14. The errors are
measured in the || - ||oc NOrm.

The observed experimental orders have been reported in Fig. 6.1-6.3 for T = 0.55139 (compare [15]) and for different
values of ¢. In particular Figs. 6.1 and 6.2 show that the methods of order p =3 and p =4 constructed in Sections 5.3-5.5
match the theoretical predictions and preserve the expected order when applied to the van der Pol problem (6.1)-(6.2) with
values of the parameter £ = 10~! and & = 10~3 which correspond to nonstiff and mildly stiff problems, respectively. Similar
pictures, obtained for methods of order p =2 constructed in Sections 5.1 and 5.2, are not reported here. Fig. 6.3 shows that
the IMEX RK methods can suffer from the well known order reduction phenomenon when the problem (6.1)-(6.2) is stiff,
but the order is still preserved for small values of the stepsize h. To the aim of comparison we also reported in Fig. 6.1, 6.2
and 6.3 the numerical solution obtained by the method IMEX-SSP3(4,3,3) derived in [27]. The construction of IMEX general
linear methods with high stage order which overcome the order reduction issue is treated by the authors in [8].

6.2. Schnackenberg’s model

Following [16] our next test model for the IMEX schemes is the system of reaction-diffusion equations in two space
variables
u_p 32u+82u +K(a—u+u’v)
at '\ ax2 ' 9y2 ’
v 2v  3%v
— =Dy == + — ) +«(b —u?v),
at 2<8x2 B y2> ( )

0<x,y <1, t>0, with initial conditions
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Fig. 6.2. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p =3 and p =4 on the van der Pol problem (6.1)-(6.2) with

e=1073.
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Fig. 6.3. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p =3 and p =4 on the van der Pol problem (6.1)-(6.2) with
£=1075.
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Table 6.1
Lso-norm of errors and observed orders of convergence p for IMEX RK methods applied to the discretization (6.4) of reaction-diffusion equations (6.3) by
second order finite differences in space variables for the diffusion terms, with N =M = 21.

h IMEX-RK22Lm IMEX-RK33A IMEX-RK36S7 /2 IMEX-RK48SSP
llerror|loo p llerror|lo p llerror|loo p llerror|loo p

1.0000e—-03 1.35e—-01 6.31e—02 9.59e—-02 4.08e—03

5.0000e—04 2.61e—02 237 8.99e—03 2.81 2.15e—02 215 3.14e—04 3.70
2.5000e—04 5.63e—03 221 1.36e—03 2.72 3.71e—-03 2.54 2.26e—05 3.80
1.2500e—-04 1.30e—-03 211 1.98e—04 2.78 5.53e—-04 275 1.53e—06 3.89
6.2500e—05 3.12e—04 2.06 2.72e—05 2.86 7.58e—05 2.87 9.93e—-08 3.94
3.1250e—05 7.64e—05 2.03 3.59e—06 2.92 9.93e—06 293 8.23e—09 3.59

u,y,00=a+b+103exp < — 100<(x— %)2 + (y _ %>2>>

V. y.0)= G

and the homogeneous Neumann boundary conditions

ou au ou u
—(0,y,t)=—(1,y,t) =0, —(x,0,t)=—(x,1,t)=0,
ax( y.t) ax( y.0) ay( ) 8y( )
ov av

0x

The parameter values are a =0.1305, b = 0.7695, D1 = 0.05, D, =1, x = 100. This model is due to Schnackenberg [29] and
it is related to the Gray-Scott model for pattern formation described in [28]. As observed in [16], it is stiff already on rather
coarse grids, due to relatively large diffusion coefficients.

The system (6.3) was discretized on the uniform grids in space variables x and y, x; = (i — 1)Ax, fori=1,2,...,N,
(N-DAx=1,yj=(—-1DAy, for j=1,2,...,M, (M —1)Ay =1, using standard second order finite differences in space
for the diffusion terms. This leads to the system of ODEs of dimension 2NM for the unknown functions u;;(t) ~ u(x;, y;, t)
and v;j(t) ~ v(x;, yj,t) of the form

—(0,y,0)= 8—V(1,y,t):0, —(x,0,0)= 8—V(x,l,r)zo.
dx ay ay

Uipl,j = 2Uij + Uiz Ui — 2Uj5 + Ui, 2
= D]( AX2 + Ay? _uijVij+7/(1 _uij)7

V= D2< i+1,] i+ Vicrg | Vi ij +Vi-1j

2
Ax2 Ay2 ) + Ujjvi; — (y +K)Vij,

i=1,2,...,N, j=1,2,..., M, with initial conditions

uij(0)=a+b+1073 exp(— 100((Xi — %)2 n (yj B %>2>)

b
vij(0) = @i
i=1,2,...,N, j=1,2,..., M. Because of the boundary conditions we have

Ug,j=1U2j, UN41,j=UN-1,j, Ujo=Ui2, UiM+1=1UiM-1,
Vo,j=V2,j, VN+1,j=VN-1,j, Vio=Vi2, ViM+1=ViM-1-

This system of ODEs (6.4) was then solved by IMEX schemes IMEX-RK22Lm, IMEX-RK33A, IMEX-RK36Sy >, and IMEX-
RK48SSP, where the diffusion terms were treated by implicit method and the reaction terms by the explicit methods.
A selection of the results of numerical experiments are presented in Table 6.1, where the maximum errors all over the
integration grid has been reported. We can see that all the considered methods achieve the expected order of convergence.

6.3. One-dimensional shallow water model

We now consider a one-dimensional model of shallow water flow (compare [22,27]):

9 9
—h+—(hv)=0
o +8x( v) =0,

d 9 1 1 (h? (6.5)
—(v)+— (R +=h?*)==(—=—h
Bt( v)+ax( +3 ) 8<2 v>,
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Fig. 6.4. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p =3 and p =4 on the one-dimensional shallow water problem
(6.5) with boundary conditions (6.6) and & = 1072,

where h is the water height with respect to the bottom and hv is the flux of the velocity field. We use periodic boundary
conditions and initial conditions at tg =0

h0,x) =1+ %sin(Snx), hv(0,x) = %h(O,x)z, (6.6)

with x € [0, 1]. For this problem the space derivative was discretized by a fifth order finite difference weighted essentially
non-oscillatory (WENO) scheme following the implementation described in [30]. The results at t = 0.5 obtained by the
numerical methods of order p =3 and p =4 constructed in Sections 5.3-5.5 are reported in Figs. 6.4 and 6.5, where the
maximum error all over the integration grid is computed with respect to a reference solution computed by the Matlab
function odel5s with very tight tolerances atol = 10~1® and rtol = 10~'4. The errors are measured in the || - ||oc norm.
Again, to the aim of comparison we also reported the numerical results obtained by the method IMEX-SSP3(4,3,3) derived
in [27].

All numerical experiments reported in this paper were performed in a fixed stepsize environment, and they illustrate that
the IMEX schemes constructed in this paper achieve the expected order of accuracy for some range of stepsizes. To compare
these methods to other schemes constructed in the literature on the subject it would be also of interest to perform similar
experiments for variable stepsizes. However, this would require the construction of accurate and reliable error estimators for
large and small stepsizes and the development of appropriate step size changing strategies for IMEX methods. The analysis
of these implementation issues requires different tools than those employed in this paper, which deals with the construction
of IMEX RK methods with desirable stability properties. These implementation topics, in the context of IMEX RK methods,
and in a more general context of IMEX general linear methods, will be investigated in a future work.

7. Concluding remarks

We considered the class of IMEX RK methods and we investigated the construction of good methods from three different
points of view. In particular we derived IMEX RK methods of order p =2, p =3 and p =4 by maximizing:

e the area of the region of absolute stability Sg of explicit RK method (2.2);
e the area of the stability region S, for « =7 /2 and o =1 /4;
e the SSP coefficient of the explicit RK method.



G. Izzo, Z. Jackiewicz / Applied Numerical Mathematics 113 (2017) 71-92 91

r T rrT T T H T LI | T T T T T T T T T
— — — Slope p=3
—— IMEX-RK33) PR
Y1 IMEX-RK36S_ - |
= ¢ IMEX-RK36S _,,
s —+— IMEX-RK36SSP
> —O— IMEX-SSP3(4,3,3)
: 1071 : - .
N | L L L N | L L L N | L L L L
107° 107" 10°
h
10° : ,
— - — Slope p=4 T
o IMEX-RK48S_ LT
_ 0 | — A IMEX-RK48S_, LT -
= —/— IMEX-RK48SSH :
=
SN
2100 |
10_105 “‘14 ‘ ‘ ‘ ““‘13 ‘ ‘ “““2
10 10 10 10

Fig. 6.5. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p =3 and p =4 on the one-dimensional shallow water problem
(6.5) with boundary conditions (6.6) and & = 10~4.

Even if the order reduction phenomenon can occur for large values of the stepsize, numerical examples illustrate that the
methods derived in this paper perform well for some range of the stepsize on stiff differential systems arising in different
fields of applications, such as the semi-discretization in space variables of time dependent PDEs.

Future work will address the construction of IMEX GLMs of high order and stage order with inherent Runge-Kutta

stability, which do not suffer from order reduction phenomenon.
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