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Abstract

This project investigated multirate time integration methods. These methods evolve a
differential equation system in time by advancing parts of the problem with fast time scales at
small time steps and parts of the problem with slow time scales with larger time steps. The
project developed new methods and theory as well as a set of prototype software
implementations. Multirate methods were tested on combustion and climate applications. A
series of five presentations were given on project results and two papers are planned.

Background and Research Objectives

With exascale systems, scientific simulations, such as in climate, combustion, power grid, and
hydrological sciences, will include more physics, resulting in a growing number of changing
time scales. Starting with (Gear 1984) and continuing with (Savcenco et al., 2007, Guenther et
al. 2016, and Sarshar 2019), multirate methods were developed to address these issues.
Multirate methods lower computational cost by using small time steps only for fast evolving
components and larger steps elsewhere. These methods address two types of problems, ones
with multiple processes each with its own time scale (additive processes) and ones with
unknowns evolving at differing time scales (variable partitioned processes).

While multirate methods had been in use in some applications, at the start of this project, little
work had been done to develop methods that were both efficient and had favorable mathematical
properties, including high stability and high order accuracy. In addition, no multirate methods
appeared in any general-purpose time integration software. This project explored multirate time
integrators that could be amenable to an integrator package. The original 3 objectives were: 1)
Establish consistency and stability theory for multirate methods suitable for a time integration
package, 2) Develop partitioning and parallelization strategies, and 3) Develop and prototype
common software infrastructure for multirate integrators and test the prototypes in applications.

As the project progressed, we observed that the infrastructure required for variable partitioned
methods would be fairly substantial both in run time cost and in development time for a general-
purpose software library. We thus deemphasized work on variable partitioned methods. As a
result of these changes, we replaced Objective 2 with a new Objective: Investigate viability of
hybrid exponential-multirate methods and the viability of multirate multistep methods for
additive systems. This objective allowed us to evaluate multirate methods outside the traditional
multistage, Generalized Additive Runge-Kutta (GARK) and the Recursive Flux-Splitting
MultiRate (RFSMR) frameworks that have been examined already in the literature.

Overall, our objectives have been met. We identified a number of multirate methods that could
be candidates for a general-purpose software package. We established stability theory for
methods for additive problems and developed a set of prototype Matlab and C (parallel)



implementations of methods and tested them in combustion and climate applications. We have
given five presentations including results of this work and have two papers in progress.

Scientific Approach and Accomplishments

Objective 1: Establish consistency and stability theory for multirate methods suitable for a
time integration package

A review of the literature determined that accurate and efficient explicit multirate methods were
well handled. Methods with streamlined accuracy had been developed in the multirate GARK
(MrGARK) (Guenther et al. 2016) and RFSMR (Schlegel et al. 2009) Runge-Kutta frameworks.
At the time, implicit methods were less developed, and we focused our attention in the project on
developing implicit methods.
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Figure 1: Each fast and slow stage of a solve-decoupled Figure 2: Predictor-Corrector methods first compute the
method is only implicit with itself and receives information solution in an unpartitioned manner using a coarse step size
from the other timeline only from prior computed stages. then recompute the fast stages using a small step size. Such
The stability of such methods is limited. methods are highly stable but more expensive.

We conducted detailed stability analyses of implicit methods using a variety of coupling
strategies. A fully implicit multirate method would use an implicit solve over all fast steps
together with the slow steps, but the cost of such a method would be far greater than a unirate
method rendering the multirate implicit method useless. In order to be cost-effective, implicit
multirate methods can afford to use only a minimal amount of joint implicit solves between both
the fast and slow partitions. However, decoupling the solves makes the methods less stable.

If a method is wholly solve-decoupled, each fast and slow stage is implicit only with itself and
receives information from the other timeline in an explicit manner (Fig. 1). While of low cost,
our tests showed that such methods have highly reduced stability compared to unirate methods.
We also found that methods that couple a small number of fast and slow steps together (Gunther
et al. 2016, Guenther et al. 2001), but leave most of the fast steps decoupled, are more stable than
decoupled methods but remain far from the stability of unirate implicit methods.

We did a breakdown of the stability structure of the methods and showed that solves over a fast
step with a small 6t co-stepped with a slow step with a larger At have an algebraic form with



compromised stability. Motivated by this result, we used the MrGARK framework (Guenther et
al. 2016) to develop a type of implicit method that takes joint coarse steps between the fast and
slow partitions but then re-sweeps the fast steps to refine the fast timeline for accuracy (see Fig.
2). The resulting methods have nearly unconditional stability, which is a vast improvement over
prior approaches and results in methods with only marginally less stability than unirate implicit
methods. Our collaborators at VA Tech then developed refined versions of the initial methods
with accuracy-optimized coefficients, which, along with our work, are being written into a joint
publication (Roberts et al. 2019).

Objective 2: Investigate viability of hybrid exponential-multirate methods and the viability
of multirate multistep methods, both for additive systems.

Hybrid exponential-multirate methods are a hybridization of standard exponential methods
that partition a problem into a portion that is advanced with a standard implicit step and a portion
using exponential integration. Exponential functions of matrices within exponential integrators
can be naturally substepped (Gaudreault et al. 2018) and, in the unpartitioned case, give trivially
unconditionally stable methods (Tokman 2006).

In this project, highly stable, third-order hybrid exponential multirate methods were derived. A
stability analysis was conducted putting the new methods on par with the most stable implicit
GARK methods. A breakdown of the stability structure of the schemes was conducted, and a
means for deriving unconditionally stable second-order methods was found. The stability of
those methods was analytically proved, and the approach taken for second-order seems
extensible to higher order. The order of accuracy of the methods were numerically confirmed,
and a paper on these methods is being prepared for submission within the next few months.
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Figure 3: The implicit and exponential portions of the hybrid schemes are coupled in a splitting like manner where partitions are
interleaved in time and only the final result of one partition is fed into the other.

Hybrid exponential multirate methods have a structure similar to splitting methods (see Fig. 3)
but are able to obtain higher than second order without the need for backward time steps that
make higher-order splitting methods untenable for most problems (Blanes et al. 2005). Further,
these methods do not result in a fast-to-slow ratio dependent coupling error in the scheme in
contrast with GARK and RFSMR methods that have a coupling error that grows with this ratio.

Multirate Backward Differentiation Formula (BDF) Methods. We conducted a review of the
multirate multistep integrator literature and identified 7 coupling strategies and their impact on



stability of the methods. Stability analysis is considerably more difficult for these methods than
for the Runge-Kutta methods, but tentative conclusions about the approaches were drawn from a
combination of results from literature and results on test problems. The compound-fast approach
which first coarsely solves the problem in an unpartitioned manner then recomputes the fast
partition alone using small time steps, is the most stable.

All the coupling strategies except one (which is just a hybridization of two of the others) were
implemented in Matlab using BDF multistep methods of orders 1-6 as base methods, and the
implementations were tested on several test problems. The methods were implemented with the
Nordsieck array approach used in CVODE, making the results directly relevant to the BDF
implementations in SUNDIALS. Using that representation, all the multirate BDF methods could
share most of their code, so supporting all coupling strategies in CVODE should be very
straightforward. The methods were tested on two very simple ODE test problems and a
hydrogen combustion problem. Performance of the methods was similar on all problems, but the
compound-fast method was deemed the best balance of cost and stability. Since different
coupling strategies can be straightforwardly implemented on a common BDF framework (which
already exists in CVODE), the best approach is certainly to implement all coupling strategies in
SUNDIALS and choose the best strategy on a problem-by-problem basis.

Objective 3: Develop and prototype common software infrastructure for multirate
integrators and test in applications.

Development of prototype codes and test problems. We developed prototype codes in both
Matlab and C that allowed for assessing the software infrastructure needed to support multirate
methods. Both code frameworks implement two types of GARK-based methods. The first was
solve-decoupled GARK methods in which the fast and slow operators are always evolved
independently of each other, and the second was the predictor-corrector methods, where the first
stage can involve a coupled evolution of the fast and slow operators. Both classes of methods
were implemented with similar internal structures. The methods take as inputs multirate
Generalized Additive Runge-Kutta (MrGARK) tables of coefficients allowing the code to be
general to any solve-decoupled or predictor-corrector GARK method. The codes were both
frameworks that can have any methods of the discussed forms instantiated underneath them. The
predictor-corrector frameworks were tested using the 2nd-order and 3rd-order methods in
(Roberts 2019), as well as a 3rd-order predictor-corrector method created as part of the project
which uses a Kvaerno-Rentrop style coupling (Guenther et al. 2016). The decoupled method
frameworks were tested using all 12 methods described in (Sarshar et al., 2019).

An array of test problems was also implemented in both Matlab and C so that methods could be
tested and compared. Test problems included the Gray-Scott pattern formation problem, the
inverter chain problem, the FlameSolver application from M. McNenly’s LLNL combustion
simulation group, and the MG2 climate microphysics originally given to us from P. Caldwell’s
Kinematic Driver implementation.
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Figure 4: The Gray-Scott pattern formation problem still Figure 5: The Gray-Scott pattern formation at time t =
early at t = 1000. The pattern is growing from the center. 10,000. The pattern has expanded to fill the entire domain.

Multirate Integrators for Climate Microphysics. Climate processes inherently occur at a wide
range of time scales, and many models include low accuracy schemes that will soon become
insufficient as higher spatial resolutions are adopted. We explored the application of high order
explicit-explicit multirate time integration methods in a MATLAB version of the Morrison-
Gettleman 2 (MG2) cloud microphysics model (Gettelman and Morrison, 2015). In microphysics
models sedimentation (e.g., rain) can occur at rates on the order of 100 times faster than other
microphysics processes. Currently MG2 evolves the model state using a sequentially split
explicit Euler method with substepped sedimentation. As shown in Figure 7, a third order
multirate infinitesimal step method (Schlegel et al. 2009) is more efficient when compared to
single rate explicit (Euler) and sub-stepped (Euler-SS) methods as greater accuracy is required.
These gains in efficiency are in spite of a loss of order in the method likely due to discontinuities
in the model, and we expect larger efficiency gains with model reformulation to remove these.
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Figure 6: The evolution of rain mass in the WarmO test case  Figure 7: The max absolute error in rain mass after 8 hours
with a height dependent constant moisture source. versus the total number of function evaluations. For a given
accuracy, lines further to the left indicate greater efficiency.

Multirate Integrators for Combustion. The Zero-RK (Zero-order Reaction Kinetics) software
framework (McNenly et al., 2015) was utilized to explore the application of multirate Rosenbrock



methods to chemical combustion simulations. We focused on variable partitioning of the state
and a compound-fast multirating strategy. The partitioning approach divided the state into a
limited subset of system variables that produce a local truncation error that is significantly larger
than the local truncation error for other system variables. Tests with a second order Rosenbrock
method showed improved compound step sizes in the two test cases employed. However, the
cost of the refinement steps outweighed any savings from the increased compound step size.
Tests with higher order Rosenbrock methods revealed the need for higher order Rosenbrock-W
methods to handle approximate Jacobian data (Rang et al., 2005). A higher order Rosenbrock-W
method could prove more efficient and offer more opportunities for optimization. However,
outperforming an adaptive order and step single-rate linear multistep integrator will still be
challenging given the increased number of stage solves required for a multistage method. As
such, further development of multirate multistep methods could be beneficial for this problem.

Multirate Integrators for Reacting Flow. Solve-decoupled implicit mulitrate and predictor-
corrector implicit multirate methods were tested on a reactive-flow unsteady flame problem
using two reaction mechanisms (Lapoint, et al. 2019). The stiff chemical reactions were
assigned to the fast partitions and the advection-diffusion transport to the slow partition of each
integrator. Previously, linear multistep methods (BDF) were applied. The stability region of the
BDF methods corresponds well to the real-axis dominated eigen-spectrum of the problem. The
solve-decoupled multirate methods were found to lack sufficient stability to be competitive,
requiring the step size to be reduced relative to the unirate methods. The predictor-corrector
methods, on the other hand, were found to be more than sufficiently stable. However, the
methods' use of a coarse-first step resulted in a large cost. Furthermore, there was strong
coupling between the problem components resulting in a lack of regime where the efficiency of
the predictor-corrector method was as good as a unirate method. Thus, either the problem is too
coupled for multirate methods or the cost of the fast partition must be greatly lowered before the
predictor-corrector method will be competitive on a reactive-flow problem of this type.

Impact on Mission

This project was directly relevant to the Laboratory’s Core Competency in High-Performance
Computing, Simulation, and Data Science. Specifically, it has increased Laboratory expertise in
time integration methods and software for multiphysics and multiscale problems, such as are
found in climate, combustion, and astrophysics, among many others throughout the DOE,
especially among exascale applications. The LLNL SUNDIALS library is at the forefront of
time integration libraries for single physics applications. This project provided the necessary
research foundation that, along with later implementations, will move SUNDIALS to the
forefront of packages for multiphysics applications. In addition, the project allowed the time
integration group at LLNL to strengthen ties with three academic researchers through student
summer projects. Lastly, the project brought a series of excellent summer students to LLNL
which will, hopefully, provide a pool of future job candidates.

Conclusion

This project developed both new multirate time integration methods and accuracy and stability
theory. The project also built collaborations between LLNL and academic researchers in the



area, and the project team will continue these collaborations through completion of papers and
participation on student PhD committees. Follow-on work in the area of software for multirate
integration methods has been initiated through a project in the DOE Office of Science Advanced
Scientific Computing Research (ASCR) office and further work will be proposed in an upcoming
proposal. In addition, the SUNDIALS team has begun working with applications beyond those
in this project, including WCI and fusion areas, to apply multirate methods to their problems.
Lastly follow-on work in the climate area was approved for funding in a project jointly funded
through the ASCR and BER offices of the DOE Office of Science.
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