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a b s t r a c t

Explicit time integration methods can be employed to simulate a broad spectrum of
physical phenomena. The wide range of scales encountered lead to the problem that the
fastest cell of the simulation dictates the global time step. Multirate time integration
methods can be employed to alter the time step locally so that slower components take
longer and fewer time steps, resulting in a moderate to substantial reduction of the
computational cost, depending on the scenario to simulate [S. Osher, R. Sanders, Numerical
approximations to nonlinear conservation laws with locally varying time and space grids,
Math. Comput. 41 (1983) 321–336; H. Tang, G. Warnecke, A class of high resolution
schemes for hyperbolic conservation laws and convection-diffusion equationswith varying
time and pace grids, SIAM J. Sci. Comput. 26 (4) (2005) 1415–1431; E. Constantinescu,
A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, SIAM J. Sci.
Comput. 33 (3) (2007) 239–278]. In air pollution modeling the advection part is usually
integrated explicitly in time, where the time step is constrained by a locally varying
Courant–Friedrichs–Lewy (CFL) number. Multirate schemes are a useful tool to decouple
different physical regions so that this constraint becomes a local instead of a global
restriction. Therefore it is of major interest to apply multirate schemes to the advection
equation. We introduce a generic recursive multirate Runge–Kutta scheme that can be
easily adapted to an arbitrary number of refinement levels. It preserves the linear invariants
of the system and is of third order accuracy when applied to certain explicit Runge–Kutta
methods as base method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Modern air pollutionmodels can be used to simulate the evolution of concentrations of contaminants in the atmosphere.
The relevant processes can be described by partial differential equations (PDE) of advection-diffusion-reaction type which
can be efficiently approximated by conservative high order spatial discretization methods with implicit/explicit time
integration.
For the advection equation

∂

∂t
c +

∂

∂x
(uc) = 0, (1)

describing transport of contaminants in air pollution models, explicit Runge–Kutta (ERK) time integration methods have
proven to be very efficient. All of these methods have in common that stability requirements limit the global time step to
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be smaller than some critical value proportional to the ratio of grid size and the magnitude of the wind speed for each cell
[2,7,14].
In realistic scenarios there are usually regions of interest such as urban areas which have to be examined more closely

than the surrounding area, e.g. woodland or agricultural regions. Therefore the spatial grid in these regions is refined [3,4].
Additionally even for equidistant grids the wind speed may vary considerably across the entire domain. Thus the smallest
cell, ormore exactly the cell with the smallest characteristic time determines the global time step.Multirate time integration
methods can be employed to adapt the time step locally so that slower components take longer and fewer time steps,
resulting in a moderate to substantial reduction of the computational cost, depending on the scenario to simulate [5].
Themultirate schemewe shall introduce is intended to be implemented in a complex three-dimensional weathermodel.

This model shall also employ local refinement strategies and must allow for strongly varying wind speeds. Cell size ratios
up to 1:16 and wind speeds of some m/s at ground level in contrast to approximately 100 m/s in large altitudes may lead
to characteristic times per cell varying by several orders of magnitude. Therefore the use of a multirate time integration
scheme is crucial for efficient computation.
Multirate approaches have been developed since the early 1980s. Osher and Sanders [11] presented a scheme allowing

multirate Euler steps.More current approaches allow for awide variety ofmultirate schemes by proposing genericmultirate
methods based on traditional ERKs. In 2005 Tang and Warnecke [12] proposed different multirate schemes which can be
generalized to support arbitrary ERKs as basemethod. The resulting schemes however are notmass preserving. The approach
of Constantinescu and Sandu [2] yields multirate ERK schemes which are mass preserving and at most of second order
accuracy.
The approach discussed in this paper borrows ideas from an implicit–explicit splitting scheme introduced in [10], where

explicit Runge–Kuttamethods are combinedwith an arbitrary implicit time integrator. In contrast to themethodsmentioned
above this newmethod is basedon a right-hand side splitting andnot on a splitting by components. Applied to thediscretized
advection equation this means that it is based on a splitting of the fluxes instead of flux differences per cell. The newmethod
is called Recursive Flux Splitting Multirate (RFSMR).
Themain part of this paper, Section 2, is dedicated to the introduction and order analysis of RFSMR. In particular we shall

show that the scheme is second order accurate for second order base methods. Furthermore we prove that the third order
methods from Knoth and Wolke [10] can be extended to a third order method in the new context. The order analysis will
be carried out in the context of partitioned Runge–Kutta methods (PRK). Afterwards, in Section 3 we will present spatial
discretizations of the advection equation. A decomposition approach beneficial for the new schemes will be outlined in the
context of block structured grids. In Section 4 we will perform numerical tests affirming both stability and accuracy as well
as efficiency of this novel class of multirate schemes.

2. Explicit Runge–Kutta multirate scheme based on a right-hand side splitting

Themultirate scheme is derived from a splitting of the right-hand side of the differential equation in two parts as follows

w′ = F(w)+ G(w), w(0) = w0, w ∈ RN . (2)

Starting point is an implicit–explicit (IMEX) integration method introduced in [10] for the efficient solution of advection-
diffusion-reaction equations in air pollution. For air pollutionmodels theG term then represents the non-stiff advection part
which can be solved using explicit methods. Opposed to this the F term represents the stiff diffusion-reaction part which
must be solved using implicit methods. In the cited IMEX scheme the non-stiff, explicit part is integrated by an explicit
Runge–Kutta method, the integration method for the stiff part is undetermined. For the theoretical analysis of the method
it is assumed that this integration is carried out exactly. In [10] the IMEXmethod applied to (2) is presented in a generalized
Butcher-like tableau. For a given time step1t the method reads as follows:

w1 = w(tn), (3)

wi = vi(c̃i1t) with (4)
dvi
dτ
=
1
c̃i
ri + F(vi), τ ∈ [0, c̃i1t], vi(0) = wi−1, i = 2, . . . , s+ 1 (5)

ri =
i−1∑
j=1

ãijG(wj), (6)

w(tn +1t) = ws+1, (7)

assuming that in each stage the underlying differential equation (5) with the non-discretized implicit term F is integrated
exactly. If the implicit term F ≡ 0 we obtain the underlying classic explicit Runge–Kutta method which we will call the
outer method:

w1 = w(tn) (8)
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wi = wi−1 +1t
i−1∑
j=1

ãijG(wj) (9)

=


w0 +1t

i−1∑
j=1

aijG
(
wj
)
, if i = 1, . . . , s

w0 +1t
s∑
j=1

bjG
(
wj
)
, if i = s+ 1

(10)

w(tn +1t) = ws+1, (11)
with the relation of the tilde coefficients to the Runge–Kutta parameters in common notation:

ãij = ai,j − ai−1,j, (12)

ãs+1,j = bi − as,j, (13)

c̃i = ci − ci−1. (14)
Note that the idea of the IMEX method is that the cumulative integration interval for the stiff part equals the explicit time
step. There is another class of comparable IMEX schemes where the integration for the stiff part starts in each internal stage
at the old time stage tn and the initial value from the previous integration step and therefore the cumulative interval is
usually larger than the explicit time step [13].
If F like G is non-stiff but imposes stricter time step restrictions we can approximate (5) by a further ERK method that

we will call the inner method. This may also include a repeated application of an ERK with a smaller time step since this
repeated application can also be represented by another ERK with more stages. The choice of the inner method depends on
the stability requirements with respect to F . In addition to the subscript i, which denotes the ith stage of the outer method,
a superscript k is introduced, which indicates the kth stage of the inner method computed in stage i of the outer method. For
instance v(k)i denotes the approximation for v at stage i of the outer method and stage k of the inner method. In the rest of
this paper we will denote the parameters of the inner method with a superscript I and the parameters of the outer method
with a superscript O.
Approximating (5) by an ERK we obtain

v
(1)
i = wi−1,

v
(k)
i = v

(k−1)
i + c̃Oi 1t

k−1∑
j=1

ãIk,j

(
1
c̃Oi
ri + F

(
v
(j)
i

))
= v

(k−1)
i +

[
c̃Oi 1t

k−1∑
j=1

ãIk,j
1
c̃Oi
ri

]
+

[
c̃Oi 1t

k−1∑
j=1

ãIk,jF
(
v
(j)
i

)]

= v
(k−1)
i +

[
1t

k−1∑
j=1

ãIk,j

(
i−1∑
l=1

ãOi,lG(wl)

)]
+

[
c̃Oi 1t

k−1∑
j=1

ãIk,jF
(
v
(j)
i

)]

= v
(k−1)
i +

[
1tc̃ Ik

i−1∑
j=1

ãOi,jG(wj)

]
+

[
c̃Oi 1t

k−1∑
j=1

ãIk,jF
(
v
(j)
i

)]
,

k = 2, . . . , q+ 1,

wi = v
(q+1)
i

with q denoting the number of stages of the inner method. This results in the new multirate scheme, RFSMR. Again w(k)i
denotes the approximation forw at stage i of the outer method and stage k of the inner method.

w
(q+1)
1 = w(tn) (15)

w
(1)
i = w

(q+1)
i−1 , i = 2, . . . , s+ 1, (16)

w
(k)
i = w

(k−1)
i +1tc̃ Ik

i−1∑
j=1

ãOijG
(
w
(q+1)
j

)
+1tc̃Oi

k−1∑
j=1

ãIkjF
(
w
(j)
i

)
, i = 2, . . . , s+ 1; k = 2, . . . , q+ 1 (17)

w(tn +1t) = w
(q+1)
s+1 . (18)

For the application we have in mind let us assume that for a given ERK method the slow system
y′ = G(y)

and the complete equation (2) can be integrated stable with time steps1t and1t/2 respectively. A simple combination of
the same ERK-method as the outer and inner method therefore does not generally result in a stable multirate method and
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Table 1
Explicit second order Runge–Kutta methods

0
1 1

1/2 1/2

0
1/2 1/2
1 1 0

1/2 0 1/2

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4

0
1/2 1/2

0 1

(RK2a) (RK32a) (RK42a) (RK2b)

depends on the distribution of the outer nodes cOi . Whereas for the classical two-stage method (RK2a) (cp. Table 1) only one
inner integration has to be performed with a time interval of length1t , two inner integrations are necessary for the other
classical two-stage method (RK2b) with a time interval of length 1t/2 for both stages. To get a stable multirate method
also for (RK2a) the base method has to be carried out twice with time step1t/2 as the inner integration. The same overall
method can also be obtained by combining two different methods for the outer and inner method, (RK32a) for the outer
method and (RK2a) for the inner method or (RK2a) for the outer method and (RK42a) for the inner method. Note that the
method (RK42a) executed once with a time step of1t is equivalent to (RK2a) executed twice with a time step of1t/2.
In the implementation this problem is solved by applying the inner method n = d2c̃Oi e times with a time step of

1t(outer)/n for stage i of the outer method. Consequently the fast method advances in time with half the step size of the
slow method if for the outer method the following holds:

∀i: cOi ∈ {0, 1/2, 1}.

Other time step ratios R can be obtained by choosing n = dRc̃ie if

∀i: Rc̃Oi ∈ N0.

For instance if the fast method is to advancewith a third of the slow step size (i.e. R = 3), employing (RK2b) as outermethod
will result in four inner integrations corresponding to a time step ratio of 4, whereas the usage of (RK2a) as outer method
will actually result in the desired number of three inner integrations.
Additionally we can apply the RFSMR splitting recursively an arbitrary number of times so that any number of temporal

refinement levels can be implemented. It is straightforward to implement RFSMR for an arbitrary number of temporal
refinement levels via recursive calls of the time integration routine. The formal equivalent is to recursively continue the
splitting (2) to

w′ = F(w)+ G(w)
= [F1(w)+ F2(w)]+ G(w)

and integrate the emerging system

dv̂(k)i
dτ
= F1(w)+

1
c̃ Ik

k−1∑
j=1

ãIkj

(
F2(w)+

1
c̃Oi

k−1∑
j=1

ãOijG(w)

)
,

τ ∈ [0, c̃Oi c̃
I
k1t], v̂

(k)
i = w

k−1
i , i = 2, . . . , s+ 1, k = 2, . . . , q+ 1,

in the same way as (5) using the algorithm (15)–(18).
For order analysis it is convenient to cast (15)–(18) in PRK form. In general an explicit s-stage PRK method for the ODE

system (2) can be written in the form:

wn+1 = wn +1t
s∑
i=1

bFi F(wn,i)+1t
s∑
i=1

bGi G(wn,i), (19)

wn,i = wn +1t
i−1∑
j=1

aFijF(wn,j)+1t
i−1∑
j=1

aGijG(wn,j), i = 1, . . . , s (20)

where (aFij), b
F
j and (a

G
ij ), b

G
j are parameters of Runge–Kutta methods. Usually partitioned Runge–Kutta methods are

introduced for a componentwise splitting of ODE systems. According to Ascher et al. [1] the right-hand side splitting can
also be transformed into a splitting by components and vice versa.
As for explicit Runge–Kutta methods, formal order conditions can be derived [8]. These conditions consist of the order

conditions for the individual Runge–Kutta methods and additional coupling conditions. For internally consistent PRKs (i.e.
cF = cG) the order conditions up to order three are listed below.

Order 1:
∑s
i=1 b

F
i =

∑s
i=1 b

G
i = 1

Order 2:
∑s
i=1 b

F
i c
F
i =

∑s
i=1 b

G
i c
G
i = 1/2∑s

i=1 b
F
i c
G
i =

∑s
i=1 b

G
i c
F
i = 1/2
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Order 3:
∑s
i=1 b

F
i

(
cFi
)2
=
∑s
i=1 b

G
i

(
cGi
)2
=
1
3∑s

i=1
∑s
j=1 b

F
i a
F
i,jc
F
j =

∑s
i=1
∑s
j=1 b

G
i a
G
i,jc
G
j =

1
6∑s

i=1 b
G
i

(
cFi
)2
=
∑s
i=1 b

F
i

(
cGi
)2
=
1
3∑s

i=1
∑s
j=1 b

G
i a
F
i,jc
F
j =

∑s
i=1
∑s
j=1 b

F
i a
G
i,jc
G
j =

1
6 .

We will now cast RFSMR as a generic PRK method. First we rewrite (17):

w
(k)
i = w

(k−1)
i +1t

i−1∑
j=1

c̃ Ikã
O
ij︸︷︷︸

=ã(k),Gi,j

G
(
w
(s+1)
j

)
+1t

k−1∑
j=1

c̃Oi ã
I
kj︸︷︷︸

=ã(k),Fi,j

F
(
w
(j)
i

)
. (21)

Using (12)–(14) we can transform the parameters ã(k),Fi,j , ã
(k),G
i,j to the parameters in common notation. The complete method

can be represented using

AI =

a
I
1,1
...

. . .

aIq,1 · · · a
I
q,q

 , BI =

b
I
1 · · · b

I
q

...
. . .

...

bI1 · · · b
I
q

 ,

C I =

c
I
1 0 · · · 0
...

...
. . .

...

c Iq 0 · · · 0

 , M =

1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 , 1 = (1, . . . , 1)T

with C I ∈ Rq×q,M ∈ Rq×q, 1 ∈ Rq to read

cO1 1+ c̃
O
2 c
I c̃O2 A

I

cO2 1+ c̃
O
3 c
I c̃O2 B

I c̃O3 A
I

...
...

. . .
. . .

cOs 1+ c̃
O
s+1c

I c̃O2 B
I
· · · c̃Os B

I c̃Os+1A
I

c̃O2 b
I
· · · c̃Os b

I c̃Os+1b
I

fast

cO1 1+ c̃
O
2 c
I aO2,1C

I

cO2 1+ c̃
O
3 c
I aO2,1M + ã

O
3,1C

I aO3,2C
I

...
...

. . .
. . .

cOs 1+ c̃
O
s+1c

I aOs,1M + ã
O
s+1,1C

I
· · · aOs,s−1M + ã

O
s+1,s−1C

I aOs+1,sC
I

bO1e
T
1 · · · bOs−1e

T
1 bOs e

T
1

slow

in the common Butcher notation. Starting from this notation it can easily be shown that both fast and slow method as well
as the coupled method are second order accurate if the underlying base method is at least second order accurate.

(bF)T1 =
s+1∑
k=2

c̃Ok (b
I)T1 = 1

(bF)TcF =
s+1∑
k=2

c̃Ok (b
I)T
(
cOk−11+ c̃

O
k c
I)
=
1
2

(bG)T1 =
s+1∑
k=2

bOk−1e
T
11 = 1

(bG)TcG =
s+1∑
k=2

bOk−1e
T
1

(
cOk−11+ c̃

O
k c
I)
=
1
2

cG = cF ⇒ (bF)TcG = (bG)TcF =
1
2
.

Knoth andWolke [10] derived one additional third order consistency condition for their IMEX splitting in addition to the
classical order conditions:

s+1∑
i=1

c̃i
s∑
j=1

(
aij + ai−1,j

)
cj =

1
3

(22)
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Table 2
Third order explicit Runge–Kutta methods

0
1/2 1/2
1/2 −1/6 2/3
1 1/3 −1/3 1

1/6 1/3 1/3 1/6
(RK43)

Table 3
A third order consistent multirate method, based on (RK43)

0
1/4 1/4
1/4 1/4 0
1/2 1/2 0 0
1/2 1/2 0 0 0
1/2 −1/6 0 0 0 2/3
3/4 1/12 0 0 0 1/6 1/2
3/4 1/12 0 0 0 1/6 1/2 0
1 1/3 0 0 0 −1/3 1 0 0
1 1/3 0 0 0 −1/3 1 0 0 0

1/6 0 0 0 1/3 1/3 0 0 0 1/6

0
1/4 1/4
1/4 −1/12 1/3
1/2 1/6 −1/6 1/2
1/2 1/12 1/6 1/6 1/12
1/2 1/12 1/6 1/6 1/12 0
3/4 1/12 1/6 1/6 1/12 0 1/4
3/4 1/12 1/6 1/6 1/12 0 −1/12 1/3
1 1/12 1/6 1/6 1/12 0 1/6 −1/6 1/2
1 1/12 1/6 1/6 1/12 0 1/12 1/6 1/6 1/12

1/12 1/6 1/6 1/12 0 1/12 1/6 1/6 1/12 0

Slow method Fast method

with as+1,j = bj. They constructed two methods satisfying these conditions, a three-stage third order method (RK3c)
and a four-stage third order method (RK43), listed in Table 2. The four-stage method has the convenient nodes c =
(0, 1/2, 1/2, 1), suitable for the time step ratio of R = 2 desired for our application. We employ this method both as inner
and outer method and eliminate redundant rows and columns to obtain the multirate PRK listed in Table 3. The redundant
lines are due to Runge–Kutta stages i of the base method with c̃i = 0 which result in redundant columns l of the generated
PRK with

∀j: aFj,l = 0 ∧ a
G
j,l = 0,

and consequently in redundant rows, correlated to the Runge–Kutta stages l = kwith

∀j: aFk,j = a
F
k−1,j ∧ aGk,j = a

G
k−1,j

conditions. It is an open questionwhethermultirate schemes constructed frommethods satisfying the additional third order
conditions (22) are generally of third order.

3. Spatial discretization

We now approximate the advection equation (1). Apart from t all variables may be vector valued, e.g. if transport of
multiple different contaminants in three-dimensional space is simulated. Additionally u may depend on t and x. To keep
notation compact, wewill describe in the following uniform advection u = const of a single species in one spatial dimension.
In the course of spatial discretization a partial differential equation (PDE) is transformed to a semidiscrete ordinary

differential equation (semidiscrete ODE). The continuous variable c is transformed to a variable w being discrete in space
and continuous in time. For ourmodel we choose a finite volume approximation, so the elements ofw represent the average
values of c across fixed disjoint spatial intervals:

wj(t) =
1
hj

∫ xj+1/2

xj−1/2
c(x, t)dx, (23)

hj = xj+1/2 − xj−1/2, (24)

xj =
xj−1/2 + xj+1/2

2
. (25)

The cell edges at xj+1/2 define the grid. We call hj the cell size and xj the midpoint of cell j. With the above discretization (1)
can be transformed to the semidiscrete flux form [7]

w′j(t) = −
1
hj

(
fj+1/2 (t, w(t))− fj−1/2 (t, w(t))

)
, (26)

with the fluxes f at the cell boundaries xj+1/2
fj+1/2 = uwj+1/2.
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Fig. 1. Flux exchange in RFSMR.

This can be interpreted so that the temporal evolutionsw′j are the differences of incoming and outgoing fluxes fj−1/2, fj+1/2,
divided by the cell size hj. The division by the cell volume is correlated to the transformation of amass flux to a concentration
evolution.
We will approximate fj+1/2 by different upwind methods commonly used for advection problems. The first order scheme

for uniform advection reads

wj+1/2 =

{
wj, if u ≥ 0,
wj+1, if u < 0. (27)

The other spatial discretization we will consider is the positive third order upwind biased scheme [9]:

wj+1/2 = wj +max
(
0,min

(
rj+1/2, 2, 2

(
−αj + γjrj+1/2

)))
(wj − wj−1), (28)

αj = −
hjhj+1

(hj−1 + hj)(hj−1 + hj + hj+1)
,

γj =
hj(hj−1 + hj)

(hj + hj+1)(hj−1 + hj + hj+1)

for nonnegative advection speeds with the slope ratio

rj+1/2 =
wj+1 − wj

wj − wj−1
.

For equidistant grids this scheme can bewritten asmember of the κ-family [6] with κ = 1/3. Themore general formulation
(28) allows for the accurate calculation of fluxes at the interface between piecewise equidistant grids with different
resolutions.
Awidespread approach to applymultirate schemes is to partition the cells of the grid according to the characteristic time

per cell [2]. Based on this common partitioning we decompose the faces of the grid on which the fluxes are defined so that
each partition contains the outgoing fluxes of the corresponding cell partition. As the flux differences form the right-hand
side, this decomposition by components leads to a natural decomposition of the right-hand side. Due to the partitioning
of the fluxes, mass preservation is guaranteed at any stage of the explicit PRK method. Additionally, as for the calculation
of a cell’s outflow the most recent intermediate result is employed, the method preserves positivity. For further discussion
let us assume that the slow and fast cells correspond to a partitioning of the grid in two contiguous parts with a common
interface.
This partitioning is shown schematically in Fig. 1. The first row shows the partitioning of the cells. Assuming positive

wind speed the second row shows the partitioning of the fluxes. In practical applications additional ghost cells including
their outer face are added at the interface between the two partitions. Thus we can store additional cell values w(gc) and
additional face fluxes f (gf ). Due to the positive wind speed and assuming a third order upwind spatial discretization the flux
at the interface fk−1/2 depends only on the cell values wk−2, wk−1, wk, all of which are present in some form in Partition 1.
Partition 2 contains cells from index k as ordinary cells and cell k− 1 as ghost cell.
The second row of the table shows the fluxes that can be calculated per partition. After the calculation of the fluxes

neighboring partitions must exchange fluxes. In Fig. 1 the fluxes received are noted with a superscript (gf) for ghost flux.
After the flux exchange each partition can compute the inflow/outflow difference for any cell contained in this partition.

Note that for a negative sign of the wind speed the flux fk−1/2 at the interface depends on concentrationswk−1, wk, wk+1, so
that the interface flux must be calculated by Partition 2.
For further clarification we will now present one macro time step integrated with a multirate scheme based on forward

Euler steps. We will only regard the cells at the interface including ghost cells. The grid is decomposed as in Fig. 1, Partition
1 is integrated with the half macro time step. Data contained in the data structure of Partition 1 is denoted with a hat.
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Initialization ŵ1k−1 = ŵk−1(t)
ŵ
1,(gc)
k = ŵ

(gc)
k (t)

w1k = wk(t)
w
1,(gc)
k−1 = w

(gc)
k−1(t)

Exchange P1⇐ P2 f̂ 1,(gf )k+1/2 = f
1
k+1/2

Time integration P1 ŵ2k−1 = ŵ
1
k−1 +

1t
2hk−1

(
f̂ 1k−1/2 − f̂

1
k−3/2

)
ŵ
2,(gc)
k = ŵ

1,(gc)
k +

1t
2hk

(
f̂ 1,(gf )k+1/2 − f̂

1
k−1/2

)
f̂ 2,(gf )k+1/2 = f̂

1,(gf )
k+1/2

ŵ3k−1 = ŵ
2
k−1 +

1t
2hk−1

(
f̂ 2k−1/2 − f̂

2
k−3/2

)
ŵ
3,(gc)
k = ŵ

2,(gc)
k +

1t
2hk

(
f̂ 2,(gf )k+1/2 − f̂

2
k−1/2

)
Exchange P1⇒ P2 f cum,(gf )k−3/2 =

(
f̂ 1k−3/2 + f̂

2
k−3/2

)
/2

f cumk−1/2 =
(
f̂ 1k−3/2 + f̂

2
k−3/2

)
/2

Time integration P2 w3k = w
1
k +

1t
hk

(
f 1k+1/2 − f

cum
k−1/2

)
w
3,(gc)
k−1 = w

1,(gc)
k−1 +

1t
hk−1

(
f cumk−1/2 − f

cum,(gf )
k−3/2

)
Finalization ŵk−1(t +1t) = ŵ3k−1

ŵ
(gc)
k (t +1t) = ŵ3,(gc)k

wk(t +1t) = w3k
w
(gc)
k−1(t +1t) = w

3,(gc)
k−1

One can show that this algorithm yields the same results as the naive application of our multirate scheme. Note that we
need only two unidirectional exchanges while in a naive implementation four unidirectional exchanges or two bidirectional
exchanges would be necessary.

4. Numerical results

In this sectionwewill examine stability and convergence ofmultirate schemes generatedwith RFSMR and compare these
results to those obtained employing the underlying base method in classical (i.e. singlerate) form.
For numerical tests we will employ a one-dimensional uniform advection equation as test equation
∂c
∂t
= −

∂c
∂x

with periodic boundary conditions
c(t, 0) = c(t, 1).

We use two different grid structures to discretize the continuous interval [0, 1]: an equidistant grid with grid spacing
h = 0.01 resulting in 100 cells and a nonequidistant grid consisting of three equidistant sub-grids with h = 0.02 on the
intervals [0, 0.26), (0.74, 1] and h = 0.01 on [0.26, 0.74]. This results in two coarse partitions of 13 cells each corresponding
to the first two sub-intervals and one fine partition of 48 cells corresponding to the third sub-interval. Note that due to
stability considerations the maximum time step on the finer cells is only half as large as on the coarser cells.

4.1. Stability analysis

For the stability analysis we will employ a triangle pulse as initial profile:

c(x, t = 0) =

{10x− 4 if x ∈ [0.4, 0.5)
−10x+ 6 if x ∈ [0.5, 0.6]
0 otherwise.

Our measure for stability is the total variation (TV) seminorm:

TV (t) =
∑
j

|wj(t)− wj−1(t)|, t > 0.

A spatially and temporally discrete system is called total variation diminishing (TVD) if
∀t,1t > 0: TV (t +1t) ≤ TV (t).

We compared base methods (RK2a) and (RK43) using the positive third order upwind biased spatial discretization (28),
accounting for the relative grid spacing of the correlated cells. Fig. 2 shows distinct differences between the TV developing
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Fig. 2. Comparison of different base methods. Positive third order upwind biased spatial discretization, base methods (RK2a) (1t = 0.9) and (RK43)
(1t = 0.8).

Table 4
A multirate scheme based on (RK32a)/(RK2a)

0
1/2 1/2
1/2 1/2 0
1 1 0 0
1 1 0 0 0
1 1/2 0 0 0 1/2

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2
1 1/4 1/4 1/4 1/4
1 1/4 1/4 1/4 1/4 0

Slow method Fast method

for (RK2a) and (RK43). Moreover the graphs for equidistant and nonequidistant grids are not only differently steep but also
show clear qualitative differences. The graphs obtainedwith equidistant grids are very steadywhile for nonequidistant grids
segments with steep and shallow gradient alternate periodically. Again this is a consequence of the diffusive effects of the
larger cells: while the cone passes the coarse cells it is smeared, passing the fine cells its form is preserved. The periodic
boundary conditions combined with the wind speed of u = 1 account for the period of1t = 1. Partially these effects may
result from the fact that due to the use of limiters the employed spatial discretization is nonlinear. We found similar results
for all tested combinations of discretizations.
Fig. 3 shows profiles on a nonequidistant grid developedwith (RK2a) using different time steps and themultiratemethod

based on (RK32a)/(RK2a), cp. Table 4. A possible interpretation is that the multirate method locally switches between the
smaller time step in the fine central region and the larger time step in the remaining intervals. Within the fine region the
profile obtained using multirate time integration is identical to the profile obtained using the classical method with the
smaller time step. A deviation is visible starting from the first coarse and therefore slow cell indicated by the dashed vertical
line, see Fig. 3(b).
All of the above results confirm that the multirate schemes constructed via RFSMR are total variation diminishing for

TVD base methods. This holds for any tested full discretization. The time step restrictions of the RFSMR schemes equal the
restrictions of the underlying base method.

4.2. Order analysis

To get an outline of the methods’ convergence behavior we will compute numerical solutions for different time steps
1t(k) and examine the deviation ofw(k)(t = 1) from a reference solution w̃ in a weighted L1-Norm

‖w − w̃‖ =
∑
j

hj|wj − w̃j| ≈
∫ 1

0
|c(x)− c̃(x)|dx.

Our reference is obtained by applying a four-stage fourth order singlerate method with1t = 10−5. This time step is one
order of magnitude below the smallest time step of the remaining samples. All computations in this subsection were done
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(a) Total interval.

(b) Detail.

Fig. 3. Profile leaving fine grid.

using the first order upwind spatial discretization and a relatively soft initial profile

c(x, t = 0) = sin10(πx).

We compare these results to those obtained by applying the underlying base method. For additional comparison we
listed the results for the correlated schemes based on the generic multirate scheme of Constantinescu and Sandu [2], see
Tables 5 and 6.
Results are shown in Fig. 4(a). Fitting a function of the family Err(ν) = a · νb we obtain the results shown in Table 7. As

already shown analytically we can obtain third order accuracy by applying RFSMR to (RK43) as base method, even though
the error factor is five times as high as for singlerate (RK43). This difference is due to the larger time steps of the multirate
methods performed in the coarse region of the grid. Asmentioned in [2] their schemes aremaximum second order accurate.
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Table 5
Multirate scheme according to Constantinescu and Sandu [2], based on (RK2a)

0
1 1
0 0 0
1 0 0 1

1/4 1/4 1/4 1/4

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4

Slow method Fast method

Table 6
Multirate scheme according to Constantinescu and Sandu [2], based on (RK43)

0
1/2 1/2
1/2 −1/6 2/3
1 1/3 −1/3 1
0 0 0 0 0
1/2 0 0 0 0 1/2
1/2 0 0 0 0 −1/6 2/3
1 0 0 0 0 1/3 −1/3 1

1/12 1/6 1/6 1/12 1/12 1/6 1/6 1/12

0
1/4 1/4
1/4 −1/12 1/3
1/2 1/6 −1/6 1/2
1/2 1/12 1/6 1/6 1/12
3/4 1/12 1/6 1/6 1/12 1/4
3/4 1/12 1/6 1/6 1/12 −1/12 1/3
1 1/12 1/6 1/6 1/12 1/6 −1/6 1/2
1 1/12 1/6 1/6 1/12 1/12 1/6 1/6 1/12

Slow method Fast method

Table 7
Empirical order for time integration methods

Method Error Speedup (emp.) (%) Speedup (theor.) (%)

singlerate RK2a ≈0.006251t2.0001 – –
Constantinescu and Sandu RK2a ≈0.015881t2.0000 −3.05 12.9
RFSMR RK2a ≈0.015801t2.0001 22.51 20.78

singlerate RK43 ≈0.000091t3.0006 – –
Constantinescu and Sandu RK43 ≈0.000351t2.0041 0.18 10.39
RFSMR RK43 ≈0.000451t3.0332 14.62 20.78

This is confirmed by our results, even though the errors for large time steps are nearly identical with the errors obtained
using RFSMR (RK43).
Also listed in Table 7 is the speedup, which is calculated via

SUmethod = 1−
Tmethod
Tsinglerate

,

where T is the measured computational time for the empirical speedup and the number of elementary flux calculations for
the theoretical speedup respectively. Note that due to the splitting by fluxes employed in the RFSMR algorithm the slow/fast
interface is strictly localized on one single edge. Opposed to this for the schemes constructed according to Constantinescu
and Sandu [2] the influence of the faster partition grows into the slower partition in course of each Runge–Kutta stage. The
relative effect of this issue decreases with a growing number of cells per interface. All in all the simplicity of the RFSMR
algorithm leads both to superior empirical and theoretical speedup.
Note that the speedup of any multirate method will grow with the ratio of cells integrated with the largest time step.

The theoretical speedup of RFSMR is given by

SURFSMR ≈ 1−

n∑
i=1
2iCi

n∑
i=1
2nCi

,

with Ci denoting the number of cells which can be stably integrated with a maximum time step in [2−i1t0, 21−i1t0).

5. Conclusions and future work

Realistic simulations often lead to a wide range of spatial grid sizes and consequently very different time step size
restrictions across the domain to simulate. Thus a majority of cells is integrated with a time step much smaller than
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(a) Base method RK2a.

(b) Base method RK43.

Fig. 4. Multirate methods: Error vs. Courant number.

necessary. Multirate time integration methods can be employed to alter the time step locally, leading to a significant
reduction of computational cost.
In this paper we present a right-hand side splitting approach that can be used to extend classical explicit Runge–Kutta

methods to multirate schemes. These schemes are of second order consistency if the underlying method is of second order
consistency. Third order consistency is not generally inherited from the base method. We are however able to construct a
third order consistent multirate scheme based on an explicit third order Runge–Kutta method satisfying additional order
conditions. Our results imply that any ERK satisfying these additional conditions can be extended to a third order multirate
scheme. We found evidence that the new multirate schemes inherit the stability and TVD properties of the base method,
even though this still has to be examined analytically.
The multirate scheme proposed in this paper shall be implemented in the parallel, three-dimensional Multiscale Aerosol

Chemistry Transport (MUSCAT) model, employed at the Institute for Tropospheric Research (IfT). Currently this model uses
classical explicit time integration schemes. A special issue will be the adaption of the flux exchange strategy to higher
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dimensional nonequidistant grids. Furthermore an automatic time step selection must be implemented, which determines
time steps per logical partition of the simulation domain so that both local and global time step constraints are satisfied.
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