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We investigate implicit–explicit (IMEX) Runge–Kutta (RK) methods for differential systems 
with non-stiff and stiff processes. The construction of such methods with large regions of 
absolute stability of the ‘explicit part’ of the method assuming that the ‘implicit part’ of the 
scheme is A-stable, is described. We also describe the construction of IMEX RK methods, 
where the ‘explicit part’ of the schemes have strong stability properties. Examples of highly 
stable IMEX RK methods are provided up to the order p = 4. Numerical examples are also 
given which illustrate good performance of these schemes.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Consider the initial-value problem for a system of ordinary differential equations (ODEs) of the form{
y′(t) = f

(
y(t)

) + g
(

y(t)
)
, t ∈ [t0, T ],

y(t0) = y0,
(1.1)

where the functions f : Rm → R
m and g : Rm → R

m are assumed to be sufficiently smooth. In many practical applications 
the terms f (y) and g(y) represent processes evolving on different time scales. For example f (y) may correspond to the 
non-stiff and g(y) to the stiff processes. Such systems may arise from the semi-discretization in space variables of time 
dependent partial differential equations (PDEs) such as, for example, advection–diffusion–reaction equations, or hyperbolic 
conservation laws with relaxation. The advection–diffusion–reaction equation in one space variable x takes the form

∂ y

∂t
+ ∂(ay)

∂x
= ∂

∂x

(
d

∂ y

∂x

)
+ r(y), x ∈ [a,b], t ∈ [t0, T ], (1.2)

where the advection and diffusion coefficients a = a(x, t) and d = d(x, t) may depend on x and t but are independent of 
the concentration y, and the term r(y) corresponds to sources, sinks, and chemical reactions. Discretization of the equa-
tion (1.2) in space variable x, with appropriate boundary and initial conditions, leads to the system of the form (1.1) with 
f (y) corresponding to the discretization of the term −∂(ay)/∂x, and g(y) corresponding to the discretization of the term 
∂(d ∂ y/∂x)/∂x + r(y). In one space dimension an example of a hyperbolic system with relaxation takes the form
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∂ y

∂t
+ ∂ F (y)

∂x
= 1

ε
R(y), x ∈ [a,b], t ∈ [t0, T ], (1.3)

which takes the form (1.1) with f (y) corresponding to the discretization of −∂ F (y)/∂x, and with g(y) corresponding to 
R(y)/ε .

We will discretize the non-stiff part of (1.1) by an explicit integration formula and the stiff part of (1.1) by an implicit 
method. This leads to the class of so-called IMEX methods, and in this paper we will revisit the class of IMEX RK methods 
analyzed before by Ascher et al. [1,2], Kennedy and Carpenter [23,24] (in a somewhat more general context of additive RK 
schemes), Pareschi and Russo [26,27], Boscarino [4,5], Boscarino and Russo [7], Boscarino et al. [6], and Cardone et al. [11], 
and systematically analyze such methods up to the order p = 4. We refer to the monograph [9] for the general theory of 
RK methods.

IMEX two-step Runge–Kutta (TSRK) methods [21] were analyzed by Zharovsky et al. [34], and IMEX general linear meth-
ods (GLMs) [20] were analyzed by Zhang and Sandu [32,33], and Cardone et al. [10,12].

The organization of this paper is as follows. In Section 2 we introduce the class of IMEX RK methods and review the 
order conditions for these schemes. In Section 3 we present the stability analysis of these methods. Design criteria for IMEX 
RK methods are discussed in Section 4, and the construction of IMEX RK schemes with p = 2, s = 2, p = 2, s = 3, p = 3, 
s = 3, p = 3, s = 6, and p = 4, s = 8, is described in Sections 5.1–5.5. The results of numerical experiments are presented in 
Section 6 and in Section 7 some concluding remarks are given.

2. IMEX RK methods

Let N be a positive integer and define the stepsize h = (T − t0)/N , and the uniform grid ti = t0 + ih, i = 0, 1, . . . , N . The 
IMEX RK methods with s stages are defined by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yi = yn + h
i−1∑
j=1

aij F j + h
i∑

j=1

aij G j, i = 1,2, . . . , s,

yn+1 = yn + h
s∑

j=1

b j F j + h
s∑

j=1

b j G j,

(2.1)

n = 0, 1, . . . , N . Here,

F j = f (Y j), G j = g(Y j), j = 1,2, . . . , s.

The explicit part of the IMEX method (2.1) can be represented by the abscissa vector c, the strictly lower triangular coeffi-
cient matrix A, and the vector of weights b,

c A

b
T =

c1 = 0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

, (2.2)

and the implicit part of (2.1) can be represented by the abscissa vector c, the lower triangular coefficient matrix A with a 
constant diagonal, and the vector of weights b,

c A

bT =

c1 λ

c2 a21 λ

c3 a31 a32 λ
...

...
...

. . .
. . .

cs as,1 as,2 · · · as,s−1 λ

b1 b2 · · · bs−1 bs

. (2.3)

Putting

Y =
⎡
⎢⎣

Y1
...

Ys

⎤
⎥⎦ , F =

⎡
⎢⎣

F1
...

Fs

⎤
⎥⎦ , G =

⎡
⎢⎣

G1
...

Gs

⎤
⎥⎦ ,

the method (2.1) can be written in a more compact vector form
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Table 2.1
Order conditions for IMEX RK methods for p ≤ 3.

Order Order conditions for IMEX RK methods

p = 1 b
T

e = 1 bT e = 1

p = 2 b
T

c = 1
2 bT c = 1

2

p = 2 b
T

c = 1
2 bT c = 1

2

p = 3 b
T

c2 = 1
3 bT c2 = 1

3

p = 3 b
T
(c · c) = 1

3 bT (c · c) = 1
3

p = 3 b
T

c2 = 1
3 bT c2 = 1

3

p = 3 b
T

Ac = 1
6 bT Ac = 1

6

p = 3 b
T

Ac = 1
6 bT Ac = 1

6

p = 3 b
T

Ac = 1
6 bT Ac = 1

6

p = 3 b
T

Ac = 1
6 bT Ac = 1

6

Table 2.2
Order conditions for IMEX RK methods for p = 4.

Order Order conditions for IMEX RK methods

p = 4 b
T

c3 = 1
4 bT c3 = 1

4

p = 4 b
T
(c2 · c) = 1

4 bT (c2 · c) = 1
4

p = 4 b
T
(c · c2) = 1

4 bT (c · c2) = 1
4

p = 4 b
T

c3 = 1
4 bT c3 = 1

4

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 (b · c)T Ac = 1
8 (b · c)T Ac = 1

8

p = 4 b
T

Ac2 = 1
12 bT Ac2 = 1

12

p = 4 b
T

A(c · c) = 1
12 bT A(c · c) = 1

12

p = 4 b
T

Ac2 = 1
12 bT Ac2 = 1

12

p = 4 b
T

Ac2 = 1
12 bT Ac2 = 1

12

p = 4 b
T

A(c · c) = 1
12 bT A(c · c) = 1

12

p = 4 b
T

Ac2 = 1
12 bT Ac2 = 1

12

p = 4 b
T

A
2

c = 1
24 bT A

2
c = 1

24

p = 4 b
T

AAc = 1
24 bT AAc = 1

24

p = 4 b
T

A
2

c = 1
24 bT A

2
c = 1

24

p = 4 b
T

AAc = 1
24 bT AAc = 1

24

p = 4 b
T

AAc = 1
24 bT AAc = 1

24

p = 4 b
T

A2c = 1
24 bT A2c = 1

24

p = 4 b
T

AAc = 1
24 bT AAc = 1

24

p = 4 b
T

A2c = 1
24 bT A2c = 1

24{
Y = (e ⊗ I)yn + h(A ⊗ I)F + h(A ⊗ I)G,

yn+1 = yn + h(b
T ⊗ I)F + h(bT ⊗ I)G,

(2.4)

n = 0, 1, . . . , N − 1, where e = [1, . . . , 1]T ∈R
s , and I is the identity matrix of dimension s.

The order conditions for IMEX RK methods (2.4) were derived in [1,23,24,27]. For easy reference these order conditions 
up to the order p = 3 are listed in Table 2.1 and order conditions for p = 4 are listed in Table 2.2.
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3. Stability analysis of IMEX RK methods

To analyze stability properties of IMEX RK methods (2.4) we consider the test equation

y′(t) = λ0 y(t) + λ1 y(t), t ≥ 0, (3.1)

λ0, λ1 ∈ C, where λ0 y(t) corresponds to the non stiff part and λ1 y(t) to the stiff part of the problem (1.1). Applying (2.4)
to (3.1) we obtain{

Y = yne + z0AY + z1AY ,

yn+1 = yn + z0b
T

Y + z1bT Y ,
(3.2)

n = 0, 1, . . ., where we have used the notation z0 = hλ0, z1 = hλ1.
Assuming that det(I − z0A − z1A) 	= 0 it follows from the first equation of (3.2) that

Y = (I − z0A − z1A)−1eyn,

and substituting this relation into the second equation of (3.2) we obtain

yn+1 = R(z0, z1)yn, (3.3)

n = 0, 1, . . ., where the stability function R(z0, z1) is defined by

R(z0, z1) = 1 + (z0b
T + z1bT )(I − z0A − z1A)−1e. (3.4)

For IMEX RK methods (2.1) with coefficients defined by (2.2) and (2.3) this function takes the form

R(z0, z1) = P (z0, z1)

(1 − λz1)s
,

where p(z0, z1) is a polynomial of degree s with respect to z0 and z1. For z0 = 0 we have

R(0, z1) = 1 + z1bT (I − z1A)−1e = P (0, z1)

(1 − λz1)s
,

which is the stability function of diagonally implicit RK method (2.3). For z1 = 0 we have

R(z0,0) = 1 + z0b
T
(I − z0A)−1e = P (z0,0),

which is the stability polynomial of explicit RK method (2.2).
As observed in [16] (see also [10–12]) in the context of IMEX θ -methods good stability properties of explicit method 

(2.2) and implicit method (2.3) are not sufficient to guarantee desirable stability properties of the overall IMEX scheme (2.1), 
and it is necessary to investigate stability properties of these methods when both explicit and implicit RK formulas operate 
in tandem as IMEX scheme. We are mainly interested in constructing methods which are A(α)- or A-stable with respect to 
the implicit part z1 ∈ C and have large regions of stability with respect to the explicit part z0 ∈ C. To investigate methods 
with these properties we define the appropriate stability regions which are subsets of C2 or C. The region of absolute 
stability of the scheme (2.1) is defined as

A =
{
(z0, z1) ∈C

2 : ∣∣R(z0, z1)
∣∣ ≤ 1

}
.

For α ∈ (0, π/2] we also define the following subsets of C

Aα =
{

z ∈ C : Re(z) < 0 and
∣∣ Im(z)

∣∣ ≤ tan(α)
∣∣ Re(z)

∣∣},

and

Sα =
{

z0 ∈C : ∣∣R(z0, z1)
∣∣ ≤ 1 for z1 ∈ Aα

}
.

We can interpret Sα as the region of absolute stability of the explicit part of (2.1) assuming that the implicit part of (2.1)
is A(α)-stable. In particular, Sπ/2 is the stability region of explicit part of (2.1) assuming that the implicit part of (2.1) is 
A-stable.

For fixed y ∈R we also define the set

Sα,y =
{

z0 ∈ C : ∣∣R(z0, z1)
∣∣ ≤ 1 for z1 = −|y|/ tan(α) + iy

}
.

The set Sα,0 corresponding to y = 0 is independent of α, and it is equal to the region of absolute stability of the explicit 
RK method (2.2). This set will be denoted by SE . We have
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Sα ⊂ SE ,

and similarly as in [10–12], we will search for IMEX RK schemes (2.1) for which Sα contains a large part of SE for some 
α ∈ (0, π/2], preferably for α = π/2. The design criteria of IMEX RK methods are discussed in Section 4.

Similarly as in [10–12] the boundary ∂Sα,y of Sα,y can be computed by the boundary locus method which computes 
the locus of the curve

∂Sα,y =
{

z0 ∈C : R
(
z0,−|y|/ tan(α) + iy

) = eiθ , θ ∈ [0,2kπ ]
}
,

where k is a positive integer. In [10] we described also an algorithm to compute the boundary ∂Sα of the stability region Sα

for α ∈ (0, π/2]. This algorithm is based on the relation

Sα =
⋂
y∈R

Sα,y, (3.5)

which follows from the maximum principle. In this algorithm for fixed direction m = − tan(α), and for fixed z1 =
−|y|/ tan(α) + iy we compute, by the bisection method, the intersection of the boundary ∂Sα,y with the ray y0 =
− tan(α)x0. Then we look for a point z0 ∈ C with minimum value of y0 = − Im(z0). Such a point belongs to the boundary 
∂Sα of the stability region Sα . We refer to [10] for a detailed description of this algorithm. A somewhat different approach 
to compute ∂Sα is presented in [26].

4. Design criteria for IMEX RK methods

In this section we describe the design criteria which will be used to construct IMEX RK schemes (2.1) with some desirable 
stability properties.

The first design criterion is based on maximizing the area of the region of absolute stability SE of explicit RK 
method (2.2). This area can be computed by numerical integration in polar coordinates as described in [3]. Such meth-
ods are obtained by the solution of the minimization problem

−area(SE) −→ min, (4.1)

with equality constrains

�p(c,A,b, c,A,b) = 0, (4.2)

where the function �p represents order conditions up to the order p. These order conditions are listed in Table 2.1 for 
p ≤ 3 and in Table 2.2 for p = 4.

The second criterion is based on maximizing the area of Sα for fixed α ∈ (0, π/2]. Such methods are obtained by the 
solution of the minimization problem

−area(Sα) −→ min, (4.3)

α ∈ (0, π/2], with the same as before equality constrains (4.2).
The third design criterion is based on maximizing the strong stability preserving (SSP) coefficient of the explicit RK 

method (2.2). This leads to the so-called SSP methods, compare [13,14]. To describe this criterion assume that the dis-
cretization of the problem (1.1) with g(y) ≡ 0 by the forward Euler method

yn+1 = yn + hf (yn),

n = 0, 1, . . . , N − 1, satisfies the monotonicity condition

‖yn+1‖ ≤ ‖yn‖ (4.4)

in some norm or seminorm ‖ · ‖, for a suitably restricted time step h determined by the CFL condition

h ≤ hF E . (4.5)

Then we will look for IMEX RK schemes of order p such that the explicit part (2.2) of the scheme preserve the monotonicity 
property (4.4), under the perhaps modified restriction on the step size h

h ≤ C · hF E (4.6)

measured by the SSP coefficient C ≥ 0 of the explicit RK method (2.2). Consider the RK method (2.2) and define the matrices

T =
[

A 0

b
T

0

]
∈R

(s+1)×(s+1), S =
[

e
1

]
∈ R

s+1.

These are the coefficient matrices of the representation of RK method (2.2) as general linear method (GLM) which was 
considered by Spijker [31]. Denote by I the identity matrix of dimension s + 1, and let [S|γ T], γ ∈ R, stand for the (s + 1) ×
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(s + 2) matrix whose first column is equal to S and the last s + 1 columns are equal to γ T. Next, following Spijker [31] we 
consider the conditions

det(I + γ T) 	= 0 and (I + γ T)−1 [
S γ T

] ≥ 0, (4.7)

where the above inequality should be interpreted componentwise. Then it follows from the result by Spijker [31] that the 
SSP coefficient of the method (2.2) (or, in general, of the GLM defined by T and S) is given by

C = C(T,S) = sup
{
γ ∈ R : γ satisfies (4.7)

}
. (4.8)

The conditions (4.7) can be reformulated in terms of A and b. Since A is strictly lower triangular we have det(I +γ A) 	= 0
which implies that det(I + γ T) 	= 0, and it can be verified that the conditions (4.7) can be reformulated as(

I + γ A
)−1

e ≥ 0, I − (
I + γ A

)−1 ≥ 0,

1 − γ b
T (

I + γ A
)−1

e ≥ 0, γ b
T (

I + γ A
)−1 ≥ 0.

(4.9)

Then it follows that the characterization of the SSP coefficient (4.8) for the representation of RK method (2.2) as GLM with 
coefficients T and S can be reformulated in terms of A and b as

C = C(A,b) = sup
{
γ ∈ R : γ satisfies (4.9)

}
. (4.10)

Similarly as in [17–19,25], this coefficient can be computed by the solution to the constrained minimization problem

F (γ , c,A,b, c,A,b) = −γ −→ min, (4.11)

with inequality constrains (4.9) and equality constrains (4.2) in the form of order conditions up to the order p.

5. Construction of IMEX RK methods

In this section we describe the construction of highly stable IMEX RK schemes up to the order p = 4 using the design 
criteria which were discussed in Section 4.

5.1. IMEX RK schemes with p = 2 and s = 2

Solving the order conditions up to p = 2 we obtain a two-parameter family of IMEX RK schemes with coefficients

c A

b
T =

0
a21

1−2λ
a21

1−2λ

2λ+2a21−1
2a21

1−2λ
2a21

,
c A

bT =
λ λ

a21 + λ a21 λ

2λ+2a21−1
2a21

1−2λ
2a21

.

The stability function of this scheme is R(z0, z1) = P (z0, z1)/Q (z0, z1) with

P (z0, z1) = 1 + z0 + z2
0

2
+ (1 − 2λ)z1 + (1 − 2λ)z0z1 +

(1

2
− 2λ + λ2

)
z2

1,

and

Q (z0, z1) = (1 − λz1)
2.

The Nørsett polynomial [15] of the implicit part of the scheme corresponding to z0 = 0 is independent of a21 and is given 
by

E(y) := Q (0, iy)Q (0,−iy) − P (0, iy)P (0,−iy) =
(
λ − 1

4

)
(1 − 2λ)2 y4.

Hence, it follows that the implicit RK method is A-stable if and only if λ ≥ 1/4. Moreover, this method is L-stable if and 
only if λ = (2 ± √

2)/2, which are the roots of the polynomial λ2 − 2λ + 1/2.
Choosing a21 = 1/(1 − 2λ) we obtain a one parameter family of IMEX schemes of order p = 2 proposed by Pareschi and 

Russo [27]. The coefficients of these methods are given by

c A

b
T =

0
1 1

1 1
,

c A

bT =
λ λ

1 − λ 1 − 2λ λ

1 1
.

2 2 2 2
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Fig. 5.1. Area of stability region Sα versus λ for α = π/2 and α = π/4.

Fig. 5.2. Stability regions Sπ/2,y , y = −2.0, −1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded region) for λ = (2 − √
2)/2, and SE (thick line) of the IMEX scheme 

with p = 2 and s = 2.

Fig. 5.3. Stability regions Sπ/2,y , y = −2.0, −1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded region) for λ = 0.4918055243674397, and SE (thick line) of the IMEX 
scheme with p = 2 and s = 2.

It can be verified that the explicit RK method has SSP property with the effective SSP coefficient Cef f = C/s, i.e., SSP 
coefficient C scaled by the number of stages s, equal to Cef f = 1/2. This is equal to the optimal value (s − 1)/s = 1/2 for 
explicit RK method of order p = 2 with s = 2 stages, compare [13].

We have plotted on Fig. 5.1 the area of the stability region Sα versus λ for α = π/2 and α = π/4. For α = π/2 this area 
attains its maximum values approximately equal to 5.83 for λ = 0.4918055243674397, and for α = π/4 this area attains its 
maximum value again approximately equal to 5.83 for λ = 0.345. The resulting methods will be denoted by IMEX-RK22Sπ/2
and IMEX-RK22Sπ/4. The points corresponding to these methods are marked by the black circles on Fig. 5.1. We have also 
marked by the black squares the points corresponding to the L-stable implicit RK methods. These points are λ = (2 −√

2)/2
for which the area of Sα is approximately equal to 4.09 for α = π/2 and approximately equal to 5.65 for α = π/4, and 
λ = (2 + √

2)/2 for which the area of Sα is approximately equal to 4.00 for α = π/2, and approximately equal to 5.66
for α = π/4. The IMEX schemes corresponding to these values of λ are denoted by IMRX-RK22Lm and IMRX-RK22Lp, 
respectively. We have also plotted on Fig. 5.2 stability region Sπ/2 corresponding to λ = (2 − √

2)/2 (shaded region) and 
stability region SE of the explicit method (thick line). To illustrate the relation (3.5) we have also plotted by thin lines 
stability regions Sπ/2,y for y = −2.0, −1.8, . . . , 2.0. On Fig. 5.3 we have plotted stability region Sπ/2 corresponding to 
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Fig. 5.4. Stability regions Sπ/2,y , y = −2.0, −1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) for the IMEX scheme with p = 2 and s = 3
with maximal area of SE .

λ = 0.4918055243674397 (shaded region) and stability region SE of the explicit method (thick line). As before we have also 
plotted by thin lines stability regions Sπ/2,y for y = −2.0, −1.8, . . . , 2.0. In this case the regions Sπ/2 and SE are almost 
identical and cannot be distinguished on Fig. 5.3.

5.2. IMEX RK schemes with p = 2 and s = 3

Solving the order conditions up to p = 2 we obtain a six-parameter family of IMEX RK schemes with coefficients

c A

b
T =

0
a21 a21

a31 + a32 a31 a32

b1 b2 b3

,
c A

bT =
λ λ

a21 + λ a21 λ

a31 + a32 + λ a31 a32 λ

b1 b2 b3

,

where b1, b2, b3, b1, b2, and b3 depend on the free parameters a21, a31, a32, a21, a31, and a32.
We will search first for IMEX schemes with maximal area of the region of absolute stability SE of the explicit method 

(c, A, b). Solving the minimization problem (4.1) we obtain the IMEX scheme with coefficients

c = [
0 1.001189204627373 0.838063598174237

]T
,

A =
⎡
⎣ 0 0 0

1.001189204627373 0 0
0.253545544784129 0.584518053390108

⎤
⎦ ,

b = [
0.480520005477614 0.396275778012860 0.123204216509527

]T
,

c = [
0.743134194610956 −0.898043878577327 4.048418175438741

]T
,

A =
⎡
⎣ 0.743134194610956 0 0

−1.641178073188283 0.743134194610956 0
1.132080119545815 2.173203861281970 0.743134194610956

⎤
⎦ ,

b = [
0.480520005477614 0.396275778012860 0.123204216509527

]T
.

This methods will be denoted by IMEX-RK23SE .
We have plotted on Fig. 5.4 stability region Sπ/2 (shaded region) and stability region SE of the explicit method (thick 

line). We have also plotted by thin lines stability regions Sπ/2,y for y = −2.0, −1.8, . . . , 2.0. The area of SE is approximately 
equal to 16.62 and the area of Sπ/2 is approximately equal to 11.73. It can be verified using (4.9) and (4.10) that the explicit 
RK method (c, A, b) has SSP property with the effective SSP coefficient Cef f = 0.144. This is quite far from the optimal value 
which, for explicit RK method of order p = 2 with s = 3 stages, is equal to (s − 1)/s = 2/3, compare [13]. However, we 
will find IMEX schemes for which the explicit RK method has optimal SSP coefficient using the third design criterion from 
Section 4. It can be also verified that the implicit method (c, A, b) is A-stable but not L-stable.

We will search next for IMEX schemes with maximal area of the region Sα for α = π/2. Solving the minimization 
problem (4.3) we obtain the IMEX scheme with coefficients

c = [
0 0.577185900656255 1.047384863251074

]T
,

A =
⎡
⎣ 0 0 0

0.577185900656255 0
0.659759720087210 0.387625143163863 0

⎤
⎦ ,
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Fig. 5.5. Stability regions Sπ/2,y , y = −2.0, −1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) for the IMEX scheme with p = 2 and s = 3
with maximal area of Sπ/2.

b = [
0.396284461794023 0.281418137752127 0.322297400453850

]T
,

c = [
0.331054829332169 1.041645102768150 0.234784053509575

]T
,

A =
⎡
⎣ 0.331054829332169 0

0.710590273435981 0.331054829332169 0
−0.126881367560843 0.030610591738250 0.331054829332169

⎤
⎦ ,

b = [
0.396284461794023 0.281418137752127 0.322297400453850

]T
.

This methods will be denoted by IMEX-RK23Sπ/2.
We have plotted on Fig. 5.5 stability region Sπ/2 (shaded region) and stability region SE of the explicit method (thick 

line). We have also plotted by thin lines stability regions Sπ/2,y for y = −2.0, −1.8, . . . , 2.0. The areas of SE and Sπ/2 are 
approximately equal to 16.62. These areas cannot be distinguished on Fig. 5.5. It can be verified using (4.9) and (4.10) that 
the explicit RK method (c, A, b) has SSP property with the effective SSP coefficient Cef f = 0.445. It can be also verified that 
the implicit method (c, A, b) is A-stable but not L-stable.

Finally, we will search for IMEX schemes for which the explicit RK method (c, A, b) has the maximal SSP coefficient. 
Solving the minimization problem (4.11) with inequality constrains (4.9) leads to a scheme with coefficients given by

c =
⎡
⎣ 0

1
2
1

⎤
⎦ , A =

⎡
⎣ 0 0 0

1
2 0 0
1
2

1
2 0

⎤
⎦ , b =

⎡
⎢⎣

1
3
1
3
1
3

⎤
⎥⎦ ,

c = [
0.204976822001215 0.686915776921670 0.608107401077115

]T
,

A =
⎡
⎣ 0.204976822001215 0 0

0.481938954920455 0.204976822001215 0
0.250998127128454 0.152132451947445 0.204976822001215

⎤
⎦ ,

b = [
1
3

1
3

1
3

]T
.

This methods will be denoted by IMEX-RK23SSP.
We have plotted on Fig. 5.6 stability region Sπ/2 (shaded region) and stability region SE of the explicit method (thick 

line). We have also plotted by thin lines stability regions Sπ/2,y for y = −2.0, −1.8, . . . , 2.0. The area of SE is approximately 
equal to 15.87 and the area of Sπ/2 is approximately equal to 12.55. We can observe that the area of SE and the interval 
of absolute stability are somewhat smaller than the corresponding areas and intervals of stability of explicit RK methods 
(c, A, b) obtained by the first two of the design criteria from Section 4. However, in this case the explicit RK method (c, A, b)

has SSP property with the optimal effective SSP coefficient Cef f = (s −1)/s = 2/3. This explicit RK method was also obtained 
by Pareschi and Russo [27] as explicit part of IMEX scheme with implicit part which is stiffly accurate. It can be also verified 
that the implicit method (c, A, b) listed above is A-stable but not L-stable.

5.3. IMEX RK schemes with p = 3 and s = 3

In this section we consider IMEX schemes with diagonally implicit Runge–Kutta (DIRK) methods with λ1, λ2, and λ3 on 
the diagonal of the coefficient matrix A. Solving the order conditions up to the order p = 2 with respect to b1, b2, b3, b1, 
b2, and b3 leads to methods for which b = b. Solving next order conditions corresponding to p = 3 with respect to a21, a31, 
a32, a21, a31, a32, and λ3 we obtain a two parameter family of methods depending on λ1, and λ2. The coefficients of the 
resulting IMEX scheme are given by
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Fig. 5.6. Stability regions Sπ/2,y , y = −2.0, −1.8, . . . , 2.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) for the IMEX scheme with p = 2 and s = 3
with maximal SSP coefficient.

Fig. 5.7. Area of stability region Sα versus λ1 for α = π/2 and α = π/4.

c =
⎡
⎣ 0

1
3
1

⎤
⎦ , A =

⎡
⎣ 0 0 0

1
3 0 0

−1 2 0

⎤
⎦ , b =

⎡
⎣ 0

3
4
1
4

⎤
⎦ ,

c =
⎡
⎣ λ1

1
3
1

⎤
⎦ , A =

⎡
⎣ λ1 0 0

1−3λ2
3 λ2 0

−1 + 3λ2 2 − 3λ2 0

⎤
⎦ , b =

⎡
⎣ 0

3
4
1
4

⎤
⎦ .

The Nørsett polynomial [15] of the implicit part of the scheme corresponding to z0 = 0 is given by E(y) = a4 y4 +a6 y6 with

a4 = 1 − 4λ1 − 4λ2 + 12λ1λ2

12
, a6 = − (1 − 3λ1 − 3λ2 + 6λ1λ2)

2

36
.

To obtain A-stable methods we have to assume that a6 = 0. This leads to λ2 = (1 − 3λ1)/(3(1 − 2λ1)) and results in one 
parameter family of implicit RK methods with coefficient matrix A given by

A =
⎡
⎢⎣

λ1 0 0
λ1

3(1−2λ1)
1−3λ1

3(1−2λ1)
0

− λ1
1−2λ1

1−λ1
1−2λ1

0

⎤
⎥⎦ ,

and the same vectors c and b as before.
We have plotted on Fig. 5.7 the area of the stability region Sα versus λ1 for α = π/2 and α = π/4. For α = π/2 this area 

attains its maximum values approximately equal to 5.38 for λ1 = 0.7886866510998523, and for α = π/4 this area attains 
its maximum values approximately equal to 8.26 for λ1 = 0.7886270683133974. The resulting methods will be denoted 
by IMEX-RK33Sπ/2 and IMEX-RK33Sπ/4. The points corresponding to these methods are marked by the black circles on 
Fig. 5.7.

Choosing λ1 = (3 + √
3)/6 leads to implicit RK method for which λ1 = λ2. The coefficients of this method are

c =
⎡
⎢⎣

3+√
3

6
1
3
1

⎤
⎥⎦ , A =

⎡
⎢⎣

3+√
3

6 0 0

− 1+√
3

6
3+√

3
6 0

1+√
3 1−√

3 0

⎤
⎥⎦ , b =

⎡
⎣ 0

3
4
1

⎤
⎦ .
2 2 4
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Fig. 5.8. Stability regions Sπ/2,y , y = −2.0,−1.8, . . . ,2.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK33λ.

This method will be denoted by IMEX-RK33λ. We have also plotted on Fig. 5.8 stability region Sπ/2 corresponding to 
λ1 = λ2 = (3 + √

3)/6 (shaded region) and stability region SE of the explicit method (thick line). We have also plotted by 
thin lines stability regions Sπ/2,y for y = −2.0, −1.8, . . . , 2.0. The area of SE is approximately equal to 9.03.

It can be verified that the second condition of (4.9) takes the form

I − (I + γ A)−1 =
⎡
⎣ 0 0 0

γ
3 0 0

− 3γ +2γ 2

3 2γ 0

⎤
⎦ ≥ 0.

This condition can be satisfied if and only if γ = 0, and it follows that the explicit RK method (c, A, b) does not have SSP 
property.

5.4. IMEX RK schemes with p = 3 and s = 6

In this section we consider IMEX schemes of order p = 3 with s = 6 stages. We will search first for IMEX methods 
with maximal area of the region of absolute stability SE of the explicit method (c, A, b). Solving the minimization prob-
lem (4.1) with equality constrains (4.2) corresponding to p = 3 leads to the method which, in Matlab rational format, has 
the following coefficients

c = [
0 83

242
1537
4715

2171
2565

846
683

667
602

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
83

242 0 0 0 0 0
249

15377
307
991 0 0 0 0

− 239
1758

1080
1687

737
2154 0 0 0

− 220
5231

524
793 − 1579

4141
810
809 0 0

701
7073 − 861

1844
1487
1443

809
1433 − 135

1132 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [ − 181
5045

3288
4885

247
1657

231
1684

513
3415 − 238

3231

]T
,

c = [
1247
2772

885
5722

166
129

1039
866

943
542

1159
415

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1247
2772 0 0 0 0 0

− 405
1372

1247
2772 0 0 0 0

1715
1951 − 784

18635
1247
2772 0 0 0

651
866 − 346

1555
4367

19788
1247
2772 0 0

− 59
1491

947
1201

235
343 − 288

1999
1247
2772 0

635
1659 − 163

829
1027
1136

1103
1620

565
988

1247
2772

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [ − 181
5045

3288
4885

247
1657

231
1684

513
3415 − 238

3231

]T
.

This method will be denoted by IMEX-RK36SE . The coefficients of this method in double precision can be obtained from 
the authors. The area of stability region SE of the explicit method (c, A, b) is approximately equal to 20.57, and the area of 
the stability region Sπ/2 is approximately equal to 8.86. The explicit method is not SSP. We have plotted on Fig. 5.9 stability 
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Fig. 5.9. Stability regions Sπ/2,y , y = −6.0,−5.4, . . . ,6.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK36SE .

region Sπ/2 (shaded region) and stability region SE of the explicit method (thick line). We have also plotted by thin lines 
stability regions Sπ/2,y for y = −6.0, −5.4, . . . , 6.0. It can be also verified that the implicit method (c, A, b) is A-stable.

We will search next for IMEX schemes with maximal area of the region Sα for α = π/2. Solving the minimization 
problem (4.3) with equality constrains (4.2) we obtain the IMEX scheme with coefficients

c = [
0 243

1945
1231
1834 − 223

5417
673
364

1652
1245

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
243

1945 0 0 0 0 0

− 2988
3461

422
275 0 0 0 0

1434
2177 − 1522

2231 − 71
4019 0 0 0

− 817
10401 − 768

1843
631
680

2113
1492 0 0

540
2599

859
915

1235
1813 − 1912

7025 − 1762
7705 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
134
143 − 413

3097
830

1311 − 430
847 − 427

9602
85

737

]T
,

c = [
395
949

452
977

853
1622

1168
1909

2325
578

2473
869

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

395
949 0 0 0 0 0

1527
32900

395
949 0 0 0 0

210
5191

165
2384

395
949 0 0 0

− 499
1637

1817
5159

433
2921

395
949 0 0

2015
1298

1015
1192

1791
1630

251
2423

395
949 0

636
575

139
141

2331
2332 − 103

199 − 283
1961

395
949

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
134
143 − 413

3097
830

1311 − 430
847 − 427

9602
85

737

]T
.

This method will be denoted by IMEX-RK36Sπ/2. The coefficients of this method in double precision can be obtained from 
the authors. The area of stability region SE of the explicit method (c, A, b) is approximately equal to 10.06, and the area 
of the stability region Sπ/2 is approximately equal to 9.95. The explicit method is not SSP. We have plotted on Fig. 5.10
stability region Sπ/2 (shaded region) and stability region SE of the explicit method (thick line). These regions are almost 
identical and cannot be distinguished on the Fig. 5.10, except the regions close to the imaginary axis. We have also plotted 
by thin lines stability regions Sπ/2,y for y = −6.0, −5.4, . . . , 6.0. It can be also verified that the implicit method (c, A, b) is 
A-stable.

Finally, we will search for IMEX schemes for which the explicit RK method (c, A, b) has the maximal SSP coefficient. 
Solving the minimization problem (4.11) with inequality constrains (4.9) and equality constrains (4.2) leads to an IMEX 
scheme, where the explicit methods has s = 5 stages. The coefficients of this scheme are given by

c = [
0 478 873 373 903

]T
,
1267 1157 577 1291
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Fig. 5.10. Stability regions Sπ/2,y , y = −6.0,−5.4, . . . ,6.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK36Sπ/2.

Fig. 5.11. Stability regions Sπ/2,y , y = −6.0,−5.4, . . . ,6.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK36SSP.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
478

1267 0 0 0 0
478

1267
478

1267 0 0 0
476

2209
476

2209
476

2209 0 0
762

3697
637

4843
637

4843
1498
6505 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

b = [
159
707

210
1793

213
1819

605
2951

397
1182

]T
,

c = [
1934
4175 0 478

1267
873

1157
373
577

903
1291

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1934
4175 0 0 0 0 0

− 1934
4175

1934
4175 0 0 0 0

461
1770 − 203

586
1934
4175 0 0 0

− 876
545

889
437 − 478

3523
1934
4175 0 0

1081
1934

19144
78703 − 1597

1624
391

1073
1934
4175 0

339
773

300
9379 − 353

1743 − 213
1154

244
1597

1934
4175

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
0 431

1916
671

5743
327

2791
385

1868
691

2063

]T
.

This method will be denoted by IMEX-RK36SSP. The coefficients of this method in double precision can be obtained from 
the authors. The area of stability region SE of the explicit method (c, A, b) is approximately equal to 33.03, and the area of 
the stability region Sπ/2 is approximately equal to 6.19. The explicit method (c, A, b) has SSP property with the effective 
SSP coefficient Cef f = C/ s = 0.530. We have plotted on Fig. 5.11 stability region Sπ/2 (shaded region) and stability region 
SE of the explicit method (thick line). We have also plotted by thin lines stability regions Sπ/2,y for y = −6.0, −5.4, . . . , 6.0. 
The implicit method (c, A, b) is not A-stable.
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Fig. 5.12. Stability regions Sπ/2,y , y = −6.0,−5.4, . . . ,6.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK48SE .

5.5. IMEX RK schemes with p = 4 and s = 8

In this section we consider IMEX schemes of order p = 4 with s = 8 stages. We will search first for IMEX methods 
with maximal area of the region of absolute stability SE of the explicit method (c, A, b). Solving the minimization problem 
(4.1) with equality constrains (4.2) corresponding to p = 4 leads to the method which, in Matlab rational format, has the 
following coefficients

c = [
0 326

1379
1749
7034

1966
2349

792
571

1123
1129

1729
2381

561
397

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
326

1379 0 0 0 0 0 0 0

− 1450
19477

1031
3191 0 0 0 0 0 0

128
15375 − 69

1555
873

1000 0 0 0 0 0
377

7459
959

1044 − 119
10006

943
2194 0 0 0 0

39
10744

181
216294

254
1269

573
832

179
1766 0 0 0

113
5084

902
2137

127
6960

57
7948

713
10786

492
2585 0 0

− 372
3299

195
8234

581
1495

569
622

207
2612

169
2983

255
4057 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
43

142610
485

3662
849

1915
502

1401 − 73
2952

318
3289 − 339

41053
47

24734

]T
,

c = [
1095
3943

200
847

142
571

763
911

694
501

5197
5196

766
953

8612
6615

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1095
3943 0 0 0 0 0 0 0

− 1159
27874

1095
3943 0 0 0 0 0 0

91
1265 − 116

1149
1095
3943 0 0 0 0 0

− 2538
5135 − 283

674
1897
1287

1095
3943 0 0 0 0

3545
2933

1243
331 − 859

554 − 196
85

1095
3943 0 0 0

2729
1518

1471
425 − 1100

317 − 3138
2975 − 77

6619
1095
3943 0 0

125
3524 − 1151

4318
238
369 − 637

792 − 971
680

1341
572

1095
3943 0

681
191

2337
281 − 3396

409 − 1122
523

2521
872 − 4265

788
4247
2011

1095
3943

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
43

142610
485

3662
849

1915
502

1401 − 73
2952

318
3289 − 339

41053
47

24734

]T
.

This method will be denoted by IMEX-RK48SE . The coefficients of this method in double precision can be obtained from the 
authors. The area of stability region SE of the explicit method (c, A, b) is approximately equal to 19.36, and the area of the 
stability region Sπ/2 is approximately equal to 7.06. The explicit method is not SSP. We have plotted on Fig. 5.12 stability 
region Sπ/2 (shaded region) and stability region SE of the explicit method (thick line). We have also plotted by thin lines 
stability regions Sπ/2,y for y = −6.0, −5.4, . . . , 6.0. It can be also verified that the implicit method (c, A, b) is A-stable.

We will search next for IMEX schemes with maximal area of the region Sα for α = π/2. Solving the minimization 
problem (4.3) with equality constrains (4.2) we obtain the IMEX scheme which, in Matlab rational format, has the following 
coefficients

c = [
0 1378 132 16115 389 327 992 2648

]T
,
5483 2885 29712 670 200 383 695
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Fig. 5.13. Stability regions Sπ/2,y , y = −6.0,−5.4, . . . ,6.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK48Sπ/2.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1378
5483 0 0 0 0 0 0 0

− 41
24173

361
7608 0 0 0 0 0 0

52
10845

1975
3728

64
8201 0 0 0

7
7667 − 8

2993
573

2038
653

2168 0 0 0 0

− 29
18805 − 139

16295
508

17301
1341
2486

917
852 0 0 0

153
1705

625
364

543
3089

595
5118

511
5378

275
694 0 0

1546
787

613
2040

61
3045

460
909

398
5743

594
863

467
1786 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
0 0 1265

5853
5

3733
3055
4101

591
13898 − 152

30203
25

249031

]T
,

c = [
217
849

469
1878

132
2885

16115
29712

389
670

327
200

992
383

2648
695

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

217
849 0 0 0 0 0 0 0

− 95
16208

217
849 0 0 0 0 0 0

620
1539 − 1264

2063
217
849 0 0 0 0 0

− 762
2513

1357
3196

241
1457

217
849 0 0 0 0

− 861
5003

963
1726

56
1329 − 443

4302
217
849 0 0 0

2822
3033 − 2477

316
2407
601

3079
404 − 5392

1615
217
849 0 0

− 1119
2579 − 1583

160
5987
628 − 3054

745
520
99

2337
1183

217
849 0

− 2282
1087 − 1880

791
9181
955

6049
741 − 5507

556 − 1559
274

2965
507

217
849

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
0 0 1265

5853
5

3733
3055
4101

591
13898 − 152

30203
25

249031

]T
.

This method will be denoted by IMEX-RK48Sπ/2. The coefficients of this method in double precision can be obtained from 
the authors. The area of stability region SE of the explicit method (c, A, b) is approximately equal to 13.87, and the area 
of the stability region Sπ/2 is approximately equal to 11.02. The explicit method is not SSP. We have plotted on Fig. 5.13
stability region Sπ/2 (shaded region) and stability region SE of the explicit method (thick line). We have also plotted by 
thin lines stability regions Sπ/2,y for y = −6.0, −5.4, . . . , 6.0. It can be also verified that the implicit method (c, A, b) is 
A-stable.

As in previous sections we will search next for IMEX schemes for which the explicit RK method (c, A, b) has the maximal 
SSP coefficient. Solving the minimization problem (4.11) with inequality constrains (4.9) and equality constrains (4.2) leads 
to an IMEX scheme with coefficients given by

c = [
0 0 641 275 1268 521 799 879

]T
,
1353 588 703 570 171 1063
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Fig. 5.14. Stability regions Sπ/2,y , y = −6.0,−5.4, . . . ,6.0 (thin lines), Sπ/2 (shaded region), and SE (thick line) of IMEX-RK48SSP.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 966
2039 0 0 0 0 0 0

0 199
5291

735
1709 0 0 0 0 0

0 306
4373

533
1060

773
628 0 0 0 0

0 61
10399

552
8267

881
1054

52
9395 0 0 0

184
2869

141
3059

826
1929

1567
757

1754
977

161
599 0 0

0 27
359

227
2338

53
557

569
4644

859
1966 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
0 277

1720
385

1314
587

1885
31

18247
665

2906 0 23
5731

]T
,

c = [
1026
3919 0 641

1353
275
588

1268
703

521
570

3127
657

879
1063

]T
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1026
3919 0 0 0 0 0 0 0

− 1148
4385

1026
3919 0 0 0 0 0 0

− 1165
2683

904
1399

1026
3919 0 0 0 0 0

1480
2439 − 1469

4070 − 121
3026

1026
3919 0 0 0 0

− 2788
397

2069
294

722
339 − 411

682
1026
3919 0 0 0

− 165
12667

105
671

133
500

1307
5430

55
26474

1026
3919 0 0

837
1003

629
1976

1195
149 − 5209

618
1045
1459

2767
911

1026
3919 0

− 752
647 − 771

2338
3197
469

2313
586 − 2267

2341 − 2128
275 0 1026

3919

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
0 277

1720
385

1314
587

1885
31

18247
665

2906 0 23
5731

]T
.

This method will be denoted by IMEX-RK48SSP. The coefficients of this method in double precision can be obtained from 
the authors. The area of stability region SE of the explicit method (c, A, b) is approximately equal to 12.90, and the area of 
the stability region Sπ/2 is approximately equal to 2.64. The explicit method (c, A, b) has SSP property with the effective 
SSP coefficient Cef f = C/ s = 0.023. We have plotted on Fig. 5.14 stability region Sπ/2 (shaded region) and stability region 
SE of the explicit method (thick line). We have also plotted by thin lines stability regions Sπ/2,y for y = −6.0, −5.4, . . . , 6.0. 
The implicit method (c, A, b) is not A-stable.

6. Numerical experiments

6.1. Van der Pol oscillator

As first test problem for our numerical experiments we consider the van der Pol oscillator (see VDPOL problem in [15]){
y′

1 = y2,

y′
2 = (

(1 − y2
1)y2 − y1

)
/ε,

(6.1)

t ∈ [0, T ], with initial conditions

y1(0) = 2, y2(0) = −2 + 10
ε − 292

ε2 − 1814
ε3 + O (ε4), (6.2)
3 81 2187 19683
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Fig. 6.1. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p = 3 and p = 4 on the van der Pol problem (6.1)–(6.2) with 
ε = 10−1.

with a stiffness parameter ε. We write the system (6.1) as (1.1), by setting

f
(

y
) =

[
y2
0

]
and g

(
y
) =

[
0(

(1 − y2
1)y2 − y1

)
/ε

]
.

We have implemented the methods constructed in this paper with a fixed stepsize h, and observed the order of con-
vergence of the numerical approximations to the slowly varying parts of the solution, where the problem is stiff for small 
values of the parameter ε. We compare the numerical results for the solution all over the integration grid with a reference 
solution computed by the Matlab function ode15s with very tight tolerances atol = 10−16 and rtol = 10−14. The errors are 
measured in the || · ||∞ norm.

The observed experimental orders have been reported in Fig. 6.1–6.3 for T = 0.55139 (compare [15]) and for different 
values of ε. In particular Figs. 6.1 and 6.2 show that the methods of order p = 3 and p = 4 constructed in Sections 5.3–5.5
match the theoretical predictions and preserve the expected order when applied to the van der Pol problem (6.1)–(6.2) with 
values of the parameter ε = 10−1 and ε = 10−3 which correspond to nonstiff and mildly stiff problems, respectively. Similar 
pictures, obtained for methods of order p = 2 constructed in Sections 5.1 and 5.2, are not reported here. Fig. 6.3 shows that 
the IMEX RK methods can suffer from the well known order reduction phenomenon when the problem (6.1)–(6.2) is stiff, 
but the order is still preserved for small values of the stepsize h. To the aim of comparison we also reported in Fig. 6.1, 6.2
and 6.3 the numerical solution obtained by the method IMEX-SSP3(4,3,3) derived in [27]. The construction of IMEX general 
linear methods with high stage order which overcome the order reduction issue is treated by the authors in [8].

6.2. Schnackenberg’s model

Following [16] our next test model for the IMEX schemes is the system of reaction–diffusion equations in two space 
variables⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂u

∂t
= D1

(
∂2u

∂x2
+ ∂2u

∂ y2

)
+ κ

(
a − u + u2 v

)
,

∂v

∂t
= D2

(
∂2v

∂x2
+ ∂2 v

∂ y2

)
+ κ

(
b − u2 v

)
,

(6.3)

0 ≤ x, y ≤ 1, t ≥ 0, with initial conditions
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Fig. 6.2. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p = 3 and p = 4 on the van der Pol problem (6.1)–(6.2) with 
ε = 10−3.

Fig. 6.3. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p = 3 and p = 4 on the van der Pol problem (6.1)–(6.2) with 
ε = 10−6.



G. Izzo, Z. Jackiewicz / Applied Numerical Mathematics 113 (2017) 71–92 89
Table 6.1
L∞-norm of errors and observed orders of convergence p for IMEX RK methods applied to the discretization (6.4) of reaction–diffusion equations (6.3) by 
second order finite differences in space variables for the diffusion terms, with N = M = 21.

h IMEX-RK22Lm IMEX-RK33λ IMEX-RK36Sπ/2 IMEX-RK48SSP

‖error‖∞ p ‖error‖∞ p ‖error‖∞ p ‖error‖∞ p

1.0000e−03 1.35e−01 6.31e−02 9.59e−02 4.08e−03
5.0000e−04 2.61e−02 2.37 8.99e−03 2.81 2.15e−02 2.15 3.14e−04 3.70
2.5000e−04 5.63e−03 2.21 1.36e−03 2.72 3.71e−03 2.54 2.26e−05 3.80
1.2500e−04 1.30e−03 2.11 1.98e−04 2.78 5.53e−04 2.75 1.53e−06 3.89
6.2500e−05 3.12e−04 2.06 2.72e−05 2.86 7.58e−05 2.87 9.93e−08 3.94
3.1250e−05 7.64e−05 2.03 3.59e−06 2.92 9.93e−06 2.93 8.23e−09 3.59

u(x, y,0) = a + b + 10−3 exp

(
− 100

((
x − 1

2

)2 +
(

y − 1
3

)2
))

,

v(x, y,0) = b
(a+b)2 ,

and the homogeneous Neumann boundary conditions

∂u

∂x

(
0, y, t) = ∂u

∂x

(
1, y, t) = 0,

∂u

∂ y

(
x,0, t) = ∂u

∂ y

(
x,1, t) = 0,

∂v

∂x

(
0, y, t) = ∂v

∂x

(
1, y, t) = 0,

∂v

∂ y

(
x,0, t) = ∂v

∂ y

(
x,1, t) = 0.

The parameter values are a = 0.1305, b = 0.7695, D1 = 0.05, D2 = 1, κ = 100. This model is due to Schnackenberg [29] and 
it is related to the Gray-Scott model for pattern formation described in [28]. As observed in [16], it is stiff already on rather 
coarse grids, due to relatively large diffusion coefficients.

The system (6.3) was discretized on the uniform grids in space variables x and y, xi = (i − 1)�x, for i = 1, 2, . . . , N , 
(N − 1)�x = 1, y j = ( j − 1)�y, for j = 1, 2, . . . , M , (M − 1)�y = 1, using standard second order finite differences in space 
for the diffusion terms. This leads to the system of ODEs of dimension 2N M for the unknown functions uij(t) ≈ u(xi, y j, t)
and vij(t) ≈ v(xi, y j, t) of the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u′

i j = D1

(
ui+1, j − 2uij + ui−1, j

�x2
+ ui, j+1 − 2uij + ui−1, j

�y2

)
− uij v2

i j + γ
(
1 − uij

)
,

v ′
i j = D2

(
vi+1, j − 2vij + vi−1, j

�x2
+ vi, j+1 − 2vij + vi−1, j

�y2

)
+ uij v2

i j − (γ + κ)vij,

(6.4)

i = 1, 2, . . . , N , j = 1, 2, . . . , M , with initial conditions

uij(0) = a + b + 10−3 exp

(
− 100

((
xi − 1

2

)2 +
(

y j − 1

3

)2
))

,

vij(0) = b

(a + b)2
,

i = 1, 2, . . . , N , j = 1, 2, . . . , M . Because of the boundary conditions we have

u0, j = u2, j, uN+1, j = uN−1, j, ui,0 = ui,2, ui,M+1 = ui,M−1,

v0, j = v2, j, v N+1, j = v N−1, j, vi,0 = vi,2, vi,M+1 = vi,M−1.

This system of ODEs (6.4) was then solved by IMEX schemes IMEX-RK22Lm, IMEX-RK33λ, IMEX-RK36Sπ/2 and IMEX-
RK48SSP, where the diffusion terms were treated by implicit method and the reaction terms by the explicit methods. 
A selection of the results of numerical experiments are presented in Table 6.1, where the maximum errors all over the 
integration grid has been reported. We can see that all the considered methods achieve the expected order of convergence.

6.3. One-dimensional shallow water model

We now consider a one-dimensional model of shallow water flow (compare [22,27]):⎧⎪⎨
⎪⎩

∂

∂t
h + ∂

∂x
(hv) = 0,

∂
(hv) + ∂

(
h2 + 1

h2
)

= 1
(

h2

− hv

)
,

(6.5)
∂t ∂x 2 ε 2
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Fig. 6.4. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p = 3 and p = 4 on the one-dimensional shallow water problem 
(6.5) with boundary conditions (6.6) and ε = 10−2.

where h is the water height with respect to the bottom and hv is the flux of the velocity field. We use periodic boundary 
conditions and initial conditions at t0 = 0

h(0, x) = 1 + 1

5
sin(8πx), hv(0, x) = 1

2
h(0, x)2, (6.6)

with x ∈ [0, 1]. For this problem the space derivative was discretized by a fifth order finite difference weighted essentially 
non-oscillatory (WENO) scheme following the implementation described in [30]. The results at t = 0.5 obtained by the 
numerical methods of order p = 3 and p = 4 constructed in Sections 5.3–5.5 are reported in Figs. 6.4 and 6.5, where the 
maximum error all over the integration grid is computed with respect to a reference solution computed by the Matlab 
function ode15s with very tight tolerances atol = 10−16 and rtol = 10−14. The errors are measured in the || · ||∞ norm. 
Again, to the aim of comparison we also reported the numerical results obtained by the method IMEX-SSP3(4,3,3) derived 
in [27].

All numerical experiments reported in this paper were performed in a fixed stepsize environment, and they illustrate that 
the IMEX schemes constructed in this paper achieve the expected order of accuracy for some range of stepsizes. To compare 
these methods to other schemes constructed in the literature on the subject it would be also of interest to perform similar 
experiments for variable stepsizes. However, this would require the construction of accurate and reliable error estimators for 
large and small stepsizes and the development of appropriate step size changing strategies for IMEX methods. The analysis 
of these implementation issues requires different tools than those employed in this paper, which deals with the construction 
of IMEX RK methods with desirable stability properties. These implementation topics, in the context of IMEX RK methods, 
and in a more general context of IMEX general linear methods, will be investigated in a future work.

7. Concluding remarks

We considered the class of IMEX RK methods and we investigated the construction of good methods from three different 
points of view. In particular we derived IMEX RK methods of order p = 2, p = 3 and p = 4 by maximizing:

• the area of the region of absolute stability SE of explicit RK method (2.2);
• the area of the stability region Sα for α = π/2 and α = π/4;
• the SSP coefficient of the explicit RK method.
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Fig. 6.5. Error versus stepsize (double logarithmic scale plot) for IMEX RK methods of order p = 3 and p = 4 on the one-dimensional shallow water problem 
(6.5) with boundary conditions (6.6) and ε = 10−4.

Even if the order reduction phenomenon can occur for large values of the stepsize, numerical examples illustrate that the 
methods derived in this paper perform well for some range of the stepsize on stiff differential systems arising in different 
fields of applications, such as the semi-discretization in space variables of time dependent PDEs.

Future work will address the construction of IMEX GLMs of high order and stage order with inherent Runge–Kutta 
stability, which do not suffer from order reduction phenomenon.

Acknowledgements

The results reported in this paper were obtained during the visit of the first author (GI) to the Arizona State University in 
the Spring semester of 2014. This author wish to express his gratitude to the School of Mathematical & Statistical Sciences 
for hospitality during this visit.

References

[1] U.M. Asher, S.J. Ruuth, R.J. Spiteri, Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 
(1997) 151–167.

[2] U.M. Asher, S.J. Ruuth, B. Wetton, Implicit-explicit methods for time dependent PDE’s, SIAM J. Numer. Anal. 32 (1995) 797–823.
[3] Z. Bartoszewski, Z. Jackiewicz, Explicit Nordsieck methods with extended stability regions, Appl. Math. Comput. 218 (2012) 6056–6066.
[4] S. Boscarino, Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems, SIAM J. Numer. Anal. 45 (2007) 1600–1621.
[5] S. Boscarino, On the accurate third order implicit–explicit Runge–Kutta methods for stiff problems, Appl. Numer. Math. 59 (2009) 1515–1528; 37 

(2015), B305–B331.
[6] S. Boscarino, R. Bürger, P. Mulet, G. Russo, M.L. Villada, Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion 

problems, SIAM J. Sci. Comput. 37 (2) (2015) B305–B331.
[7] S. Boscarino, G. Russo, On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. 

Sci. Comput. 31 (2009) 1926–1945.
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